1, Cho tam giác nhọn ABC co H là trực tâm, gọi M,N lần lượt là trung điểm của BC và AH. Đường phân giác trong góc A cắt MN tại K. CM AK vuông góc vs HK
2, Cho tam giác ABC nội tiếp đường tròn (O), Gọi AH, AD lần lượt là đường cao, đường phan giác trong của tam giác ABC (H,D thuộc BC). Tia AD cắt (O) tại E, tia EH cắt (O) tại F vaf tia FD cắt (O) tại K. CM AK là đường kính của (O)
Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O;R). Đường cao AK của tam giác ABC cắt đường tròn (O) tại D (khác A). Từ D vẽ đường thẳng song song BC cắt đường tròn (O) tại điểm E (khác D).
a) Chứng minh KA.KD=KB.KC .
b) Trên đoạn AK lấy điểm H sao cho K là trung điểm của HD.Chứng minh H là trực tâm của tam giác ABC.
c) Chứng minh ba điểm A,O,E thẳng hàng. Tính \(AB^2+BC^2+DC^2+CA^2\) theo R.
cho tam giác ABC nội tiếp đường tròn tâm O đường cao AK, H là trực tâm của tam giác, I là trung điểm cạnh AC, phân giác của góc A cắt đường tròn tại M.Chứng minh a) đường thẳng OM đi qua điểm M của BC b)góc KAM= góc MAO c) tam giác AHB đồng dạng tam giác NOI và AH=2ON
Cho tam giác ABC nội tiếp đường tròn tâm O và tia phân giác góc A cắt đường tròn tại M, vẽ đường cao AH cắt đường tròn tại N.
a) CM: OA đi qua trung điểm I của tam giác ABC
b) CM: AM là tia phân giác của góc OAH c) Gọi K là điểm đối xứng N qua BC. CM: K là trực tâm của tam giác ABC. d) KI cắt đường tròn tại E. CM: A,O,E thẳng hàng
Cho tam giác ABC nhọn (AB<AC) nội tiếp trong đường tròn tâm O có H là trực tâm. Vẽ đường kính AK của (O).
a) Tam giác ABK và tam giác ACK là tam giác gì?
b) Tứ giác BHCK là hình gì?
c) Kẻ OM vuông góc BC ở M. CM: M là trung điểm của BC, HK.
d) CM: OM = 1/2 AH.
1, Cho tam giác ABC nội tiếp (O) đường kính AD. Qua D kẻ tiếp tuyến với đường tròn cắt BC kéo dài tại P. Đường thẳng PO cắt AB, AC ở N, M. Chứng minh rằng OM = ON.
2, Cho tam giác ABC trực tâm H. Gọi A',B',C' là trung điểm của BC, CA, AB. Vẽ 3 đường tròn bằng nhau có tâm A, B, C. (A) cắt B'C' tại D và D'; (B) cắt A'C' tại E và E'. (C) cắt A'B' ở K và K'. CMR: 6 điểm D,D',E,E',K,K' thuộc 1 đường tròn.
3, Cho tam giác ABC nội tiếp (O). Phân giác góc A cắt (O) tại M, vẽ đường kính MN. Phân giác góc B, góc C cắt AN tại P, Q. CMR tứ giác PCBQ nội tiếp
Cho tam giác ABC có 3 góc nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC tại D, E. Gọi giao điểm của CD, BE là H. CM:
a) AH vuông góc BC
b) Trung trực của DH đi qua trung điểm I của đoạn thẳng AH
c) CM là tâm đường tròn ngoại tiếp tam giác ADE
d) OE là tiếp tuyến vòng tròn ngoại tiếp tam giác ADE
Cho tam giác ABC ( AB<AC) có 3 góc nhọn nội tiếp đường tròn tâm O, các đường cao BE, CF giao nhau tại K ( E thuộc AC, F thuộc AB)
a) CM: tứ giác AEKF nội tiếp
b) CM tam giác AEF đồng dạng tam giác ABC
c) Gọi N là trung điểm của BC , CM AK = 2ON