cho ABC nhọn có BC < AC<AB.đường tròn tâm O nội tiếp tam giác ABC.tiếp xúc AB tại D,tiếp xúc AC tại E ,tiếp xúc AC tại F.Lấy điểm M đối xứng với B qua F ,điểm N đối xứng với C qua E .BN,CM cắt EF ở K,H .Chứng minh tam giác DHK CÂN TẠI D
Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.
a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn này
b) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hành
c) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)
d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABC
Bài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt nhau tại H. Gọi O là trung điểm BC
a) Cm: tam giác AEF đồng dạng tam giác ABC và EF = AH/ (căn 2)
b) Cm: tam giác OEF vuông cân và diện tích tam giác AEF= diện tích tứ giác BCEF
c) Cm: trong các tam giác vuông có chiều cao ứng với cạnh huyền không đổi, tam giác vuông cân có chu vi nhỏ nhất
Bài 3: Cho (O;R) và (O' ; R') cắt nhau tại A và (R>R'). Tiếp tuyến chung EF của (O) và (O') cắt tia đối của tia AB tại C (E thuộc (O), F thuộc (O')). Gọi (I) và (J) lần lượt là tâm của 2 đường tròn ngoại tiếp tam giác OEC và tam giác O'FC
a) Cm: (I) cắt (J)
b) Gọi D là giao điểm cùa (I) và (J) (D # C). Cm: A,B,D thẳng hàng
c) Gọi M là điểm đối xứng của E qua OC, N là điểm đối xứng của F qua O'C. Cm" E,F,M,N cùng thuộc 1 đường tròn, xác định tâm đường tròn này
Bài 4: Cho tam giác ABC, vẽ (I;r) tiếp xúc AB,BC,CA lần lượt tại M,N,S.
a) Cm: AB+AC-BC=2M
b) Cho AB=7cm, BC=6cm, AC=4cm. Tính MA,NB,SC
c) Giả sử tam giác ABC vuông tại A, R và r là bán kính của đường tròn ngoại tiếp và nội tiếp của tam giác
Cm: AB+AC=2(R+r)
Các bạn không cần làm hết đâu ạ, câu nào các bạn biết thì các bạn làm dùm mình rồi gửi câu trả lời cho mình nha. Mình cần gấp lắm ạ!!!! Mong các bạn giúp mình
Cho tam giác ABC nhọn nội tiếp (O;R), đường tròn (I,BC) cắt AB,AC tại F,E. BE cắt CF tại H, cắt (O) tại M,N. OI cắt (O) tại J, AH cắt BC tại D, cắt (O) tại K.
a/ CM : H và K đối xứng nhau qua BC
b/ OA vuông góc với MN
c/ Gọi S, Q là giao điểm của AD với đường tròn (I). S nằm giữa A, D. CM : AE.AC=AD2-DS2
d/ CM : AJ là phân giác chung của góc BAC và HAO của tam giác ABC.
e/ Gọi G là trọng tâm của tam giác ABC. CM : H,G, O thẳng hàng.
Cho tam giác ABC vuông tại A và điểm M thuộc cạnh AC. Vẽ đường tròn tâm O đường kính MC cắt BC tại E. Nối BM cắt đường tròn (O) tại N, AN cắt đường tròn (O) tại D. Lấy I đối xứng với M qua A, K đối xứng với M qua E
a, Chứng minh BANC là tứ giác nội tiếp
b, Chứng minh CA là phân giác của B C D ^
c, Chứng minh ABED là hình thang
d, Tìm vị trí M để đường tròn ngoại tiếp tam giác BIK có bán kính nhỏ nhất
Cho tam giác ABC nội tiếp đường tròn tâm O và tia phân giác góc A cắt đường tròn tại M, vẽ đường cao AH cắt đường tròn tại N.
a) CM: OA đi qua trung điểm I của tam giác ABC
b) CM: AM là tia phân giác của góc OAH c) Gọi K là điểm đối xứng N qua BC. CM: K là trực tâm của tam giác ABC. d) KI cắt đường tròn tại E. CM: A,O,E thẳng hàng
Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H.
a) Gọi I là trung điểm của BC, K đối xứng với H qua I. CM: A, O, K thẳng hàng.
b) CM: AK vuông góc EF
c) Cm: nếu tam giác ABC có tanB.tanC=3 thì OH//BC
Cho tam giác ABC ( AB=AC). Cạnh AB,BC,CA tiếp xúc với đường tròn (O) tại các điểm D,E,F . BF cắt O tại I, DI cắt BC tại M. CM
a) Tam giác DEF có ba góc nhọn
b) DF//BC
c) Tứ giác BDFC nội tiếp
Cho đường tròn (O; R), dây BC cố định không đi qua O. Trên cung lớn BC lấy A sao cho tam giác ABC nhọn, AB<AC. Các đường cao AD, BE, CF của tam giác ABC giao nhau tại H. Lấy S đối xứng với A qua EF, K đối xứng với A qua O.
a) CMR B, F, E, C cùng thuộc một đường tròn (đã làm)
b) Trung trực AB cắt đường thẳng song song EF đi qua A tại N. NK cắt đường tròn tại L khác K. CMR NB là tiếp tuyến đường tròn (O).
c) CMR khi A di chuyển trên cung lớn BC thì (BK.AL)/ BL không thay đổi và đường tròn ngoại tiếp của tam giác HDS cố định.
MONG NHẬN ĐƯỢC SỰ GIÚP ĐỠ TỪ CÁC VỊ CAO NHÂN
Mấy bạn cố gắng giải hết bài giùm mình nha. Mình cảm ơn nhiều !!!