Cho tam giác ABC có 3 góc nhọn và AB < AC . Vẽ hai đường cao BD và CE
a, CM : Tam giác ABD đồng dạng với tam giác ACE . Suy ra AB.AE=AC.AD
b, CM ; tam giác ADE đồng dạng tam giác ABC
c, Tia CE và CB cắt nhau tại I . Chứng minh tam giác IBE đồng dạng với tam giác IDC
d, Gọi O là trung điểm của BC . Chứng minh ID.IE = OI2−OC2
Bài 4: (3 điểm)
Cho tam giác ABC có ba góc nhọn (AB < AC), hai đường cao BD và CE của tam giác ABC cắt nhau tại H.
1) Chứng minh ABD đồng dạng với ACE. Từ đó suy ra AB.AE = AC.AD
2) Chứng minh ADE đồng dạng với ABC
3) Gọi I là giao điểm của DE và CB, M là trung điểm của BC. Chứng minh: ID.IE = IM2 – MC2.
4) Biết BC = 15, tính giá trị biểu thức P = BH.BD + CH.CE.
Cho tam giác ABC có 3 góc nhọn và AB<AC. Vẽ 2 đường cao BD và CE
a) Chứng minh: Tam giác ABD đồng dạng tam giác ACE. Suy ra AB.AE = AC.AD
b) Chứng minh: Tam giác ABE đồng dạng tam giác ABC
c) Tia DE và CB cắt nhau tại I. Chứng minh: Tam giác IBE đồng dạng tam giác IDC
d) Gọi O là trung điểm của BC. Chứng minh ID.IE = OI2 - OC2
Cho tam giác ABC nhọn , 2 đường cao BD, CE
a) CM tam giác ABD đồng dạng với tam giác ACE
b) CM tam giác AdE đồng dạng với tam giác ACE
c) biết góc ABD=30 độ , diện tích tam giác ADE = 30 cm vuông . Tính diện tích tam giác ABC
d) tia pg của góc ACB cắt AB tại K . CM <CA.CB
Cho tam giác ABC có ba góc nhọn (AB<AC), hai đường cao BD và CE cắt nhau tại H.
1. Chứng minh tam giác ABD đồng dạng tam giác ACE, từ đó suy ra AB. AE = AC.AD
2. Chứng minh tam giác ADE đồng dạng tam giác ABC
3. Gọi I là giao điểm của DE và CB và M là trung điểm của BC. Chứng minh ID.IE=IM2-MC2
4. Biết BC=15. Tính P = BH.BD + CH.CE
Cho tam giác ABC có ba góc nhọn (AB<AC), các đường cao BD và CE cắt nhau tại H
a) Chứng minh: Tam giác ABD đồng dạng với tam giác ACE và AB.AE = AC.AD
b) Chứng minh: góc AED = góc ACB
c) Tia AH cắt ED và BC lần lượt tại K và F. Chứng minh: EK.FD = KD.EF
Cho Tam giác ABC nhọn (AB<AC), có đường cao BD,CE, cắt nhau tại H
a) Chứng minh: Tam giác ADB đồng dạng Tam giác AEC và suy ra AE x AB = AD x AC
b) Chứng minh: Tam giác ADE đồng dạng Tam giác ABC và suy ra ADE = ABC
c) Vẽ tia Dx sao cho tia DB là phân giác góc EDx. Tia Dx cắt BC tại F. Chứng minh: ADE = CDF và A,H,F thẳng hàng
Cho tam giác ABC có ba góc nhọn, các đường cao BD, CE cắt nhau tại H.
a, CMR: tam giác ABD đồng dạng với tam giác ACE
b, CMR: BH.HD = CH.HE
c, CRM: góc ADE = góc ABC
d, Đường thẳng vuông góc với AB tại B, đường thẳng vuông góc với AC tại C, cắt nhau tại M. O là trung điểm BC, I là trung điểm AM. So sánh Sahm và Siom
Cho tam giác ABC nhọn(AB<AC), vẽ hai đường cao BD và CE cắt nhau tại H.
a) Chứng minh: Tam giác ABD đồng dạng với tam giác ACE
b)Chứng minh: góc ADE=góc ABC
c) Gọi K là giao điểm của AH và BC. CHứng minh : BD là tia phân giác của góc EDK
d) Chứng minh: BH.BD vuông góc CH.CE=BC.BC