Có AD là đường phân giác trong tam giác ABC nên \(\frac{{AB}}{{AC}} = \frac{{DB}}{{DC}} \Rightarrow \frac{{DB}}{{DC}} = \frac{4}{6} = \frac{2}{3} \Rightarrow DC = \frac{3}{2}DB\)
Mà \(DB + DC = BD \Rightarrow DB + \frac{3}{2}DB = 5 \Rightarrow DB = 2\)
Có BE là đường phân giác trong tam giác ABC nên \(\frac{{AE}}{{EC}} = \frac{{AB}}{{CB}} \Rightarrow \frac{{AE}}{{EC}} = \frac{4}{5} \Rightarrow AE = \frac{4}{5}CE\)
Mà \(AE + EC = AC \Rightarrow \frac{4}{5}CE + CE = 6 \Rightarrow CE = \frac{{10}}{3}\)
Có CF là đường phân giác trong tam giác ABC nên \(\frac{{AF}}{{FB}} = \frac{{CA}}{{CB}} \Rightarrow \frac{{AF}}{{FB}} = \frac{6}{5} \Rightarrow FB = \frac{6}{5}AF\)
Mà \(AF + FB = AB \Rightarrow AF + \frac{5}{6}AF = 4 \Rightarrow AF = \frac{{24}}{{11}}\).