Bài 4. Tính chất đường phân giác của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Cho tam giác ABC, điểm D thuộc cạnh BC sao cho \(\frac{{DB}}{{DC}} = \frac{{AB}}{{AC}}\). Chứng minh AD là tia phân giác của góc BAC.

Xét tam giác ABC với ba đường phân giác AD, BE, CF, ta có:

\(\frac{{AB}}{{AC}} = \frac{{DB}}{{DC}};\,\,\frac{{BC}}{{BA}} = \frac{{EC}}{{EA}};\,\,\frac{{CA}}{{CB}} = \frac{{FA}}{{FB}}\) (Tính chất đường phân giác)

\( \Rightarrow \frac{{DB}}{{DC}}.\frac{{EC}}{{EA}}.\frac{{FA}}{{FB}} = \frac{{AB}}{{AC}}.\frac{{BC}}{{BA}}.\frac{{CA}}{{CB}} = \frac{{AB.BC.CA}}{{CA.AB.BC}} = 1\) (đpcm).


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết