Cho tam giác ABC có AC> AB. Trên cạnh AC lấy điểm D sao cho CD = AB. Đường trung trực của AD và đường trung trực của BC cắt nhau ở E. Chứng minh rằng điểm E nằm trên đường tròn ngoại tiếp tam giác ABC
1. Cho tam giác ABC cân tại A. Tia phân giác Ax của góc A cắt BC tại H. Trên AB lấy điểm M,trên tia đối của tia CA lấy điểm N sao cho BM=CN.
a. Nối MN cắt BC tại I. Chứng minh I là trung điểm của MN
b. Đường trung trực của MN cắt Ax tại O. Chứng minh OC vuông góc AC
c. Cm : 4/BC2 = 1/AB2 + 1/AC2
d. Biết AB= 6 cm,OB = 4,5 cm. Tính diện tích tam giác ABC
Cho tam giác ABC cân tại A. Phân giác Ax của góc BAC cắt BC tại H. Trên cạnh AB lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho BM=CN
a,Nối MN giao với BC tại I. Chứng minh I là tđ của MN
b, Trung trực của MN giao với Ax tại O. Chứng minh OC vuông góc với AC
c,Chứng minh 4/BC^2=1/AB^2+1BC
d, Cho AB=6cm; OB=4,5cm. Tính diện tích tam giác ABC
1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)
2)Cho tam giác ABC (AB<AC) nội tiếp đường tròn (O), đường trung tuyến AM. Lấy điểm D trên cung BC không chứa A sao cho góc BAD= góc CAM. Chứng minh góc ADB= góc CDM
3)Cho tam giác ABC nội tiếp đường tròn O tại D. Đường tròn (D;DB) cắt đường thẳng AB tại Q (khác B), cắt đuòng thẳng AC tại P (khác C). Chứng minh rằng AO vuông góc PQ
Các bạn giúp mình nhé để mình làm cho xong bài tập kẻo xuân này con không về
Cho tam giác ABC nhọn có O là giao điểm của 3 đường trung trực. Tia AO cắt BC tại D. Trên các cạnh AB và AC lần lượt lấy E, F sao cho DE=DB, DF=DC. Cmr DA là tia phân giác của góc EDF
Help
Làm xong mình tickk cho
CHO TAM GIÁC ABC CÂN TẠI A , TIA PHÂN GIÁC Ax CỦA GÓC BAC CẮT BC TẠI H . TRÊN CẠNH AB LẤY ĐIỂM M , TRÊN TIA ĐỐI CỦA TIA CA LÂY ĐIỂM N SAO CHO BM=CN.
A. NỐI MN CẮT BC TẠI I , CHỨNG MINH I LÀ TRUNG ĐIỂM CỦA MN.
B. TRUNG TRỰC CỦA MN CẮT Ax TẠI O , CHỨNG MINH OC VUÔNG GÓC VỚI AC.
C. CHỨNG MINH \(\frac{4}{BC^2}=\frac{1}{AB^2}+\frac{1}{BO^2}\)
D. BIẾT AB = 6CM, OB=4,5 CM.TÍNH DIỆN TÍCH TAM GIÁC ABC
Cho tam giác ABC đều có cạnh là 60cm. lấy điểm D trên BC sao cho BD =20cm. đường trung trực của AD cắt AB tại E, cắt AC tại F. Tính độ dài các cạnh của tam giác ABC
Cho tam giác nhọn ABC nội tiếp đường tròn O và AB < AC. Gọi H là trực tâm của tam giác ABC. Gọi L là giao điểm của đường thẳng AH với đường tròn O . Lấy điểm F bất kì trên cung nhỏ LC (F không trùng với L hoặc C). Lấy điểm K sao cho đường thẳng AC là đường trung trực của FK.
1. Chứng minh tứ giác AHKC nội tiếp đường tròn.
2. Đường thẳng HK cắt AC tại điểm I, đường thẳng AF cắt HC tại G. Chứng minh hai đường thẳng AO và GI vuông góc v
Cho tam giác ABC nhọn nội tiếp đường tròn (O). Trên cạnh AB,AC lấy các điểm D,E tương ứng sao cho AD=AE. Gọi trung trực của BD và CE cắt (O) lần lượt tại F,G. Chứng minh rằng DE//FG ?