Cho tam giác ABC cân tại A. Vẽ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE.
a. C/m BD = CE
b. Trên tia CE và tia BD lấy điểm M và N sao cho E là trung điểm của HD, D là trung điểm của HN. C/m AM = AH
c. C/m tam giác AMN cân
B1 :Cho tam giác ABC có 2 đường cao BD,CE. Gọi M,N là trung điểm của BC,DE. C/m MN vuông góc DE.
B2: Cho tam giác ABC cân tại A. H là trung điểm của BC. Kẻ HE vuông góc AC. Gọi I là trung điểm của HE. C/m AI vuông góc BE
B3: Cho tam giác ABC vuông tại A. M là trung điểm của BC. Đường cao AH. Kẻ HE vuông góc AC cắt AM tại N. C/m AM vuông góc BN
cho tam giác ABC có AB<AC<BC .
Gọi M là trung điểm của BC.
Từ B kẻ đường thẳng vuông góc với AM tại D và từ C kẻ đường thẳng vuông góc với AM tại E.
Chứng minh:
a, M là trung điểm của DE
b,BD//CE
c,CD=BE
Cho tam giác ABC vuông tại A có AB = AC. Gọi M là trung điểm của cạnh BC, D là trung điểm của cạnh AC
a). Chứng minh rằng: ∆AMB = ∆AMC và AM ⊥ BC
b) Từ A kẻ đường thẳng vuông góc với BD, cắt BC tại E. Trên tia đối của tia DE lấy điểm F sao cho DF = DE. Chứng minh rằng: ∆ADF = ∆CDE, từ đó suy ra: AF // CE
c) Từ C dựng đường thẳng vuông góc với AC, cắt AE tại G. Chứng minh rằng ∆BAD = ∆ACG
d) Chứng minh rằng: AB = 2CG
Câu 7. Cho tam giác MNP cân tại M. Tia phân giác của góc NMP cắt NP tại A.
a) Chứng minh tam giác AMN = tam giác AMP.
b) Kẻ AB vuông góc với MN, AC vuông góc với MP. Chứng minh tam giác ABC
cân.
c) Chứng minh AM vuông góc với BC
d) Kẻ BD vuông góc với NA tại D. Gọi E là giao điểm của đường thẳng BD và MP.
Chứng minh M là trung điểm của CE.
Cho tam giác ABC vuông tại A có AB = AC. Gọi M là trung điểm của cạnh BC, D là trung điểm của cạnh AC
a) Chứng minh tam giác ABC = tam giác AMC và AM\(\perp\)BC
b) Từ A kẻ đường thẳng vuông góc với BD, cắt BC tại E. Trên tia đối của tia DE lấy điểm F sao cho DF = DE. Chứng minh tam giác ADF = tam giác CDE và AF // CE
c)Từ C vẽ đường thẳng vuông góc với AC, cắt AE tại G. Chứng minh AB = 2CG
cho tam giác ABC ( AB < AC ). Gọi M là trung điểm BC. Kẻ BD vuông góc với AM ( D thuộc AM ), CE vuông góc với AM ( C thuộc AM) Chứng minh DM=ME
Cho tam giac ABC. M là trung điểm cạnh BC .Vẽ BD vuông góc với AM tại D, CE vuông góc với AM tại E.Chứng minh rằng AB+AC>2AM.
Giải chi tiết hộ mình nha.