a) Xét tam giác BDC và tam giác CEB có:
Góc B = Góc C ( vì AB = AC => tam giác ABC cân tại A )
Góc BDC = Góc CEB ( = 90 độ )
BC : cạnh chung
Do đó : Tam giác BDC = tam giác CEB ( cạnh huyền - góc nhọn )
=> BD = CE ( hai cạnh tương ứng )
b) Xét tam giác
c) Ta có AB = AC(gt)
Tam giác BDC = Tam giác CEB ( cm câu a )
=> AE = AD (2 góc tương ứng)
Mà AB - AE = AC - AD
<=> BE = CD (1)
Mặt khác góc BEI = góc CDI (2)
góc EIB = góc DIC ( đđ )
=> góc EBI = góc DCI (3)
Từ (1),(2) và (3) => Tam giác IBE = tam giác IDC( cạnh góc vuông - góc nhọn kề )
=> IB = IC ( 2 cạnh tương ứng )
=> I nằm trên đường trung trực BC (1)
Ta lại có AB = AC ( gt )
=> A nằm trên đường trung trực của BC (2)
Từ (1) và (2) => Ba điểm A , I , H là ba điểm thẳng hàng ( đpcm )
Tk nhé bạn