cách giải đây
\(\Delta ABC\)có AB = AC suy ra tam giác ABC tà tam giác cân
xét \(\Delta EBC\)và\(\Delta DCB\)
góc B = góc C ( tam giác cân )
BC là cạnh huyền chung
do đó tam giác EBC = tam giác DCB ( cạnh huyền - góc nhọn )
suy ra BD = CE ( 2 cạnh tương ứng )
b)
xét \(\Delta AHB\)và \(\Delta AHC\)có \(\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{B}=\widehat{C}\left(gt\right)\\BH=HC\left(gt\right)\end{cases}}\)
do đó \(\Delta AHB=\Delta AHC\left(c.g.c\right)\\ \Rightarrow\widehat{BAH}=\widehat{CAH}\)( 2 góc tương ứng)
xét tam giác vuông AIE và tam giác vuông AID có
AI là cạnh huyền chung
góc BAH = góc CAH ( cmt)
do đó tam giác AIE = tam giác AID ( cạnh huyền - góc nhọn )
suy ra EI = ID ( 2 cạnh tương ứng )
c) góc BAH = góc CAH mà tia AH nằm giữa tia AB và AC nên AH là phân giác góc BAC (1)
tam giác AIE = tam giác AID suy ra góc EAI = góc DAI ( 2 góc tương ứng )
mà tia AI nằm giữa 2 tia AE và AD suy ra AI là phân giác góc EAD hay góc BAC (2)
từ (1) và (2) suy ra ba điểm A;I:H thẳng hàng