a) Gọi tam giác ACB có AN là phân giác và trung tuyến AM
\(\frac{NB}{NC}=\frac{AB}{AC}=\frac{6}{12}=\frac{1}{2}\)
\(\Rightarrow NB=\frac{NC}{2}\)
NC+NB=NC+0,5NC=1,5NC=BC=9 (cm) <=> NC=6cm
=>NB=3cm
Ta có: \(\frac{NB}{BC}=\frac{3}{9}=\frac{1}{3}\)
Xét tam giác ABN có BI là phân giác
=> \(\frac{AI}{IN}=\frac{BA}{BN}=\frac{6}{3}=2\)
Lại có AM là trung tuyến nên \(\frac{AG}{GM}=2\)
\(\Rightarrow\frac{AG}{GM}=\frac{AI}{IN}=2\)
=> IG//BC(Talet đảo) (đpcm)
b) \(BM=\frac{9}{2}=4,5\left(cm\right)\)
=> MN=4,5 -3=1,5 (cm)
\(\frac{AG}{AM}=\frac{2}{3}=\frac{IG}{MN}\)(Định lý Talet)
\(\Rightarrow\frac{2}{3}=\frac{IG}{1,5}\Rightarrow IG=1cm\)