a) Ta có: AB<BC<AC (vì 6<8<10)
=> góc C < góc A < góc B (quan hệ giữa góc và cạnh đối diện)
b) Nhận thấy: \(AB^2+BC^2=6^2+8^2=36+64=100\)
\(AC^2=10^2=100\)
\(\Rightarrow AB^2+BC^2=AC^2\left(=100\right)\)
Theo định lí Pi-ta-go đảo thì tam giác ABC có độ dài 3 cạnh như trên là tam giác vuông.
c)
Ta có: MA + MC < AC (bất đẳng thức trong tam giác ACM)
=> MA + MC < AC + AB (ĐPCM)