Gọi H là giao điểm 2 đường trung tuyến BD và CE
=> H là trọng tâm trong tam giác ABC (vì là giao điểm 2 đường trung tuyến)
Ta có: BE = 3 , CD = 4
Áp dụng Py-ta -go ta được:
DH2 + CH2 = CD2 = 42 = 16 (1)
EH2 + BH2 = BE2 = 32 = 9 (2)
Cộng (1) và (2) vế theo vế ta được: DH2 + CH2 + EH2 + BH2 = 16 + 9 = 25
mà \(HD=\frac{1}{2}HB;HE=\frac{1}{2}HC\) nên : \(\frac{HB^2}{4}+HC^2+\frac{HC^2}{4}+HB^2=25\)
\(\Rightarrow\frac{5}{4}HB^2+\frac{5}{4}HC^2=25\Rightarrow HB^2+HC^2=20\)
Hay BC2 = 20 (vì HB2 + HC2 = BC2) => BC = \(2\sqrt{5}\)
Vậy \(BC=2\sqrt{5}\)