Kẻ CH vuông góc với AB tại H . Đặt HB = x ( 0 < x < 16 )
Xét tam giác vuông HBC có : tg 60 = \(\frac{HC}{HB}\Rightarrow HC=tg60^0.HB=x\sqrt{3}\)
Áp dụng định lí Pytago cho tam giác vuông AHC ta có : \(AC^2=AH^2+HC^2\)
\(14^2=\left(16-x\right)^2+3x^2\)
\(\Leftrightarrow x^2-8x+15=0\)
<=> x1 = 3 (tm) và x2 = 5 (tm )
Xét với x = 3 ta có : HB = 3 ; HC = \(3\sqrt{3}\). Áp dụng định lí Pytago cho tam giác vuông HBC ta có :
\(BC=\sqrt{HB^2+HC^2}=\sqrt{3^2+3.3^2}=6\)(cm )
Xét với x = 5 ta có : HB = 5 ; HC = \(5\sqrt{3}\); \(BC=\sqrt{HB^2+HC^2}=\sqrt{5^2+3.5^2}=10\)( cm )
Diện tích tam giác ABC là :
Với HC = 3 căn 3 ta có : HC. AB/2 = 24 căn 3 ( cm2)
với HC = 5 căn 3 ta có : HC.AB = 40 căn 3 ( cm 2 )