Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho tam giác ABC có ∠A=90o, kẻ AH vuông góc với BC (H thuộc BC). Các tia phân giác của ∠C và ∠BAH cắt nhau ở I. Chứng minh rằng: ∠(AIC)=90o

Cao Minh Tâm
23 tháng 8 2017 lúc 11:33

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Ta có: AH⊥BC (gt) ⇒ ΔAHB vuông tại H

Trong tam giác vuông AHB ta có: ∠BHA = 90o

⇒ ∠B + ∠BAH = 90o (1)

Trong tam giác vuông ABC ta có: ∠BAC = 90o

⇒ ∠B + ∠C = 90o (2)

Từ (1) và (2) suy ra: ∠BAH = ∠C (3)

+) Vì AI là tia phân giác của góc BAC nên:

∠(BAI) = ∠(IAH) = 1/2.∠BAH (4)

Do CI là tia phân giác của góc ACB nên:

∠(ACI) = ∠(ICB) = 1/2.∠C (5)

+) Từ (3); (4) và (5) suy ra:

∠(BAI) = ∠(IAH) = ∠(ACI) = ∠(ICB)

+) Lại có:

∠BAI + ∠IAC = 90º

Suy ra: ∠ICA + ∠IAC = 90º

Trong ΔAIC có: ∠ICA+ ∠IAC = 90º

Vậy: ∠AIC = 90º.


Các câu hỏi tương tự
Xem chi tiết
adh me
Xem chi tiết
Mika Chan
Xem chi tiết
Nguyễn Thị Thanh Trúc
Xem chi tiết
vy luong
Xem chi tiết
Nguyễn Thị Thanh Trúc
Xem chi tiết
Lê Thị Minh Thư
Xem chi tiết
Yumi Vũ
Xem chi tiết
dfjk gjkdvgjkdghuoskg
Xem chi tiết