Cho tam giác ABC có góc A=60 độ kẻ BD và CE là các tia phân giác của các góc B và góc C( D thuộc AC, E thuộc AB). BD và CE cắt nhau tại I
CMR a) Tính số đo góc BIC
b)Kẻ IF là tia phân giác của góc BIC (F thược BC). Chứng minh rằng
tam giác BEI=tam giác BFI
BE+CD=BC
ID=IE=IF
Cho tam giác ABC có góc A=60 độ, kẻ BD, CE là các tia pg của góc B, góc C(D thuộc AC: E thuộc AB). BD cắt CE tại I.
a)Tính góc BIC
b)Kẻ IF là các tia pg của góc BIC(F thuộc BC). CMR:
+Tam giác BEI = tam giác BFI
+BE+CD=BC
ID=IE=IF
Cho tam giác ABC có góc BAC =60 độ , các đương phân giác BD và CE cắt nhau tại I ( C thuộc AC , E thuộc AB )
a) Tính số đo góc BIC
b) kể IM là tia phân giác của góc BIC ( m thuộc BC. Chứng minh ID = IE =IM
cho tam giác ABC có góc A = 80 độ, các đường phân giác BD của góc B và CE của góc C cắt nhau tại I. Tính số đo góc BIC = ?
Tam giác ABC có các đường phân giác BD và CE cắt nhau tại I trong đó góc BIC bằng 120 o . Số đo góc A là:
A. 60 °
B. 70 °
C. 110 °
D. 50 °
Cho tam giác ABC có \(\widehat{A}=60^o\) kẻ BD, CE là các tia phân giác của các góc \(\widehat{B}\)và \(\widehat{C}\)( D thuộc AC, E thuộc AB). BD và CE cắt nhau tại I.
a) Tính số đo \(\widehat{BIC}\)
b) Kẻ IF là tia phân giác của \(\widehat{BIC}\)( F thuộc BC). Chứng minh rằng :
\(\Delta BEI=\Delta BFI\)BE+CD=BCID=IE=IFCho tam giác ABC có A= 60 độ,. Kẻ BD và CE là phân giác của góc B và C. BD và CE cắt nhau tại I
Tín BCI
cho tam giác ABC có BD,CE là 2 đường phân giác cắt nhau tại I. Biết góc A =70 độ. Tính số đo của góc BAI và BIC
Cho tam giác ABC có góc A=60 độ .Kẻ tia phân giác BD,CE( E thuộc AB ;D thuộc AC)
BD và CE cắt nhau tại O. Tia phân giác của góc BOC cắt BC tại F.
Chứng minh rằng
a) OD=OE=OF
b)tam giác DEF là tam giác đều