Cho tam giác ABC nhọn. Dựng ra phía ngoài tam giác này các tam giác đều ABE và ACF gọi M, N lần lượt là trung điểm của AE và CF. Trên cạnh BC lấy D sao cho CD = ¼ BC. Chứng minh DN vuông góc DM .
Cho tam giác ABC nhọn. Dựng ra phía ngoài tam giác này các tam giác đều ABE và ACF. Gọi M và N lần lượt là trung điểm của AE và CF. Trên cạnh BC lấy điểm D sao choCD=1/4BC. Chứng minh rằng DM vuông góc DN
cho tam giác ABC nhọn. Vẽ ra phía ngoài tam giác ABC các tam giác vuông cân tại A là ABE, ACF. Gọi I,H,K lần lượt là trung điểm các cạnh BE,CF,BC. CMR:
a) CE=BF và CE vuông góc BF
b) Tam giác IHK vuông cân tại K
Cho tam giác ABC nhọn .Vẽ về phía ngoài tam giác đó các tam giác vuông cân ABE và ACF
a,Gọi I là trung điểm của EF:chứng minh rằng AI vuông góc với BC
b, Gọi M,N,P thứ tụ là trung điểm của BE,CF và BC . chứng minh rằng tam giác MNP vuông cân
Cho tam giác ABC có góc nhọn .Dựng các tam giác đều ABC' và ACB' ra phía ngoài tam giác .Gọi K và L theo thứ tự là trung điểm của C'A cà CB' ,M là điểm trên cạnh BC sao cho BM=3MC.Gọi N và I là trung điểm của BC và AC
1) chứng minh góc KAL =góc NIB'
2)chứng minh tam giác AKL = tam giác INB'
3)chứng minh góc MKL =60 độ
4)tính các góc của tam giác MLK
Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.
a) CM: Tam giác ABE đồng dạng với tam giác ACF.
b) CM: Tam giác AFE đồng dạng với tam giác ACB.
c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.
Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng với H và C),từ M vẽ MN vuông góc với AC tại N.
a) CM:tam giác CMN đồng dạng với tam giác CAH và CA×CN=CH×CM
b) CM: tam giác ACM đồng dạng với tam giác HNC.
c) Trên tia đối của tia AC lấy điểm D sao cho AD《AC. Vẽ AE vuông góc với BD tại E. CM:góc BEH=góc BCN. Gọi K,F lần lượt là trung điểm BH và BD. I là giao điểm của EK và CF. CM: KC×IE=EF×IC.
Tam giác ABC nhọn. Dựng về phía ngoài các tam giác đều ABE, ACF. M và N là trung điểm của AE,CF. D thuộc BC sao cho CD=\(\frac{1}{4}\)BC.
CMR: DM vuông góc với DN
Cho tam giác đều ABC. Gọi M, N lần lượt là các điểm trên các cạnh AB và BC sao cho BM = BN. Gọi G là trọng tâm của tam giác BMN và I là trung điểm của AN.
Tính các góc của tam giác ICG.
Cho tam giác ABC nhọn. Dựng ra phía ngoài tam giác ABC các tam giác ABE và ACF vuông cân tại A. Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD=MA
a/ Cm tứ giác ABDC là hình bình hành.
b/ CM EF=AD.
c/ Cm AD vuông góc với EF.