Cho tam giác ABC nhọn nội tiếp đường tròn tâm O.Các đường cao AD,BE,CF cắt nhau tại H và cắt (O) tại M,N,P.
a) Chứng minh AEHF nội tiếp
b) Chứng minh B,C,E,F thuộc 1 đường tròn
c) Chứng minh rằng AE*AC=AH*AD;AD*BC=BE*AC
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M, N, P.
a) Chứng minh tứ giác CEHD nội tiếp
b) Chứng minh 4 điểm B, C, E, F cùng nằm trên một đường tròn
c) Chứng minh AE.AC = AH.AD và AD.BC = BE.AC
d) Chứng minh H và M đối xứng nhau qua BC
e) Xác định tâm đường tròn nội tiếp tam giác DEF
Làm hộ vs !!!!!!!!!!!!!!!!!!!!!!!!!!
Cho tam giác ABC có 3 góc nhọn nội tiếp (O). Vẽ các đường cao AD, BE, CF cắt nhau tại H. a/ Chứng mính bốn điểm C, D, ,H,E cùng thuộc một đường tròn tâm I. b/ Chứng minh bốn điểm B, F,E,C cùng thuộc một đường tròn tâm K. c/ Gọi M là trung điểm AH. Chứng minh: góc MEK = 90⁰
Bài 1. Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M,N,P.
Chứng minh rằng: Tứ giác CEHD, nội tiếp .Bốn điểm B,C,E,F cùng nằm trên một đường tròn.AE.AC = AH.AD; AD.BC = BE.AC.H và M đối xứng nhau qua BC.Xác định tâm đường tròn nội tiếp tam giác DEF.Bài 1. Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M,N,P.
Chứng minh rằng: Tứ giác CEHD, nội tiếp .Bốn điểm B,C,E,F cùng nằm trên một đường tròn.AE.AC = AH.AD; AD.BC = BE.AC.H và M đối xứng nhau qua BC.Xác định tâm đường tròn nội tiếp tam giác DEF.Bài 9: Cho đường tròn (O) ngoại tiếp tam giác ABC nhọn, kẻ đường cao BE, CF của tam giác ABC. BE cắt CF tại H. BE cắt (O) tại M, CF cắt (O) tại N. Chứng minh: a) B, C, E, F cùng thuộc 1 đường tròn. b) A, E, H, F cùng thuộc 1 đường tròn. c) AM = AN. d) MN // EF. e) OA vuông góc EF.
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M, N, P. Chứng minh rằng:
b) Bốn điểm B, C, E, F cùng nằm trên một đường tròn
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt ngang tại H và cắt đường tròn (O) lần lượt tại M,N,P.
1. Chứng minh rằng: Tứ giác CEHD,nội tiếp.
2. Bốn điểm B,C,E,F cùng nằm trên một đường tròn.
3. AE.AC=AH.AD; AD.BC=BE.AC
4. H và M đối xứng nhau qua BC.
5. Xác định tâm đường tròn nội tiếp tam giác DEF.
Nhớ vẽ hình nhé!
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt nhau tại đường tròn (O) lần lượt tại M, N, P.
Chứng minh rằng:
1: Tứ giác CEHD, nội tiếp.
2: Bốn điểm B, C, E, F cùng nằm trên một đường tròn
3: AE. AC = AH. AD ; AD. BC = BE. AC
4: H và M đối xứng nhau qua BC.
5: Xác định tâm đường tròn nội tiếp tam giác DEF.