Cho tam giác ABC có 3 góc nhọn.Các đường cao AD,BE,CF đồng quy tại H.Gọi M,N lần lượt là hình chiếu của B,C trên đường thẳng EF.CMR :
a)Tam giác AEF đồng dạng tam giác ABC
b)H cách đều ba cạnh của tam giác DEF
c)S mbe +S nce =S bcf
cho tam giác abc có 3 góc nhọn. các đường cao AD,BE,CF đồng quy tại H. M;N lần lượt là hình chiếu của B;C trên EF.
chứng minh AEF và ABC đồng dạng
chứng mính H cách đều 3 cạnh của tam giác DEF
Cho tam giac ABC có 3 góc nhọn . Đường cao AD,BE của tam giác ABC cắt nhau tại H.
a) chứng minh: tam giác ADC đồng dạng tam giác BEC
b)Chứng minh : HA*HD=HB*HE
c) đường phân giác của góc ACB cắt đường cao EF của tam giác EBC và đoạn thẳng BE lần lượt tại N và M. Chứng minh NF/NE=ME/MB
Cho tam giác ABC nhọn có 3 đường cao AD, BE, CF, đồng quy tại H Gọi M, N lần lượt là 2 điểm đối xứng của D qua AC, AB
1) Chứng minh M, N, E, F thẳng hàng
2) Chứng minh H cách đều 3 cạnh của tam giác DEF
Cho tam giác ABC nhọn có 3 đường cao AD BE CF và trực tâm H. Lấy H' đối xứng với H qua BC. Gọi M N là chân đường vuông góc kẻ từ H' đến AB và AC. a, Chứng minh góc AEF=góc ABC. b, CHỨNG MINH EH là tia phân giác của góc DEF và M D N thẳng hàng. c, Gọi S S1 S2 S3 lần lượt là diện tích của các tam giác ABC AEF BDF CDE, chứng minh S1S2S3/S^3 <= 1/64
Cho tam giác nhọn ABC có ba đường cao AD,BE và CF cắt nhau tại H.
a) Chứng minh: Tam giác ABE đồng dạng với tám giác ACF, từ đó suy ra : AB.AF = AC.AE
b) Chứng minh: DB.DC = DA.DH
c) Gọi I là trung điểm của BC. Đường thẳng vuông góc với IH tại H cắt AB và AC lần lượt tại M và N. Chứng minh: Tam giác AHN đồng dạng với tam giác BIH và H là trung điểm của MN.
Cho tam giác nhọn ABC có ba đường cao AD, BE,CF cắt nhau tại H. Gọi M, N, P, Q, R, S lần lượt là trung điểm các đoạn thẳng BC, CA, AB, HA, HB, HC. Các đường trung trực của tam giác ABC cắt nhau tại O.
a) BHCK, AQMO là hình gì?
b) Chứng minh PQRS, MNQR, NPRS là hình chữ nhật
c) Chứng minh MQ, OH, RN đồng quy tại 1 điểm.
Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Từ H hạ HM vuông góc với EF tại M và HN vuông góc với ED tại N.
a. Chứng minh tam giác BED và tam giác BCH đồng dạng
b. Chứng minh: HM=HN
c. Gọi I; J; Q; K lần lượt là hình chiếu của F trên AC; AD; BE; BC. Chứng minh I; J; Q; K
1. Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Chứng minh:a) H là giao điểm các đường phân giác trong tam giác DEF. b) Gọi M, N, P, Q, I, K lần lượt là trung điểm BC, CA, AB, EF, FD, DE. Chứng minh các đoạn thẳng MQ, NI, PK đồng quy.
2. Cho tam giác ABC cân tại A có AB=AC=b, BC=a. Đường phân giác BD của tam giác ABC có độ dài bằng cạnh bên của tam giác. Chứng minh rằng 1/b−1/a=b/(a+b)^2 ( dấu / là phân số, ^ là mũ).