Cho tam giác ABC có 3 góc nhọn ( AB<AC ), các đường cao AD, BE, CF cắt nhau tại H.
a) CM : Tam giác ABE đồng dạng tam giác ACF và AE.AC = AF.AB
b) CM : Tam giác AEF đồng dạng tam giác ABC và góc AEF = góc ABC
c) Gọi I là trung điểm của AH, M là trung điểm của BC. CM : MI vuông góc EF
cho tam giác abc có 3 góc nhọn, hai đường cao BE, CF, AH cắt nhau tại H: a)AE.AC=AF.AB . b) CMR: Tam giác(tg)AEF~tgABC. c)CMR: tam giác AEF đồng dạng tam giác CED từ đó suy ra: Tia EH là phân giác góc FED
cho tam giác abc có 3 góc nhọn , hai đường cao BE , CF cắt nhau tại H .
CMR a,AH vuông góc với BC
b, AE.AC=AF.AB
c,tam giác AEF đồng dạng với tam giác ABC
cho tam giác ABC có 3 đường cao AD,BE,CF cát nhau tại H
a) CM tam giác EAH đồng dạng tam giác DAC ; tam giác FAH đồng đạng tam giác DAB
b) CM AF.AB=AHAD , AE.AC=AH.AD , AE.AC=AF.AB
c) CM BH.BE+CH.CF=BC2
Cho tam giác có ba góc nhọn, hai đường cao BE, CF cắt nhau tại H (E?AC, F?AB ). Chúng minh: a) tam giác AEB ?đồng dạng với ?. tam giác AFC b)CM tam giác AEF ? đồng dạng với ?.TAM GIÁC ABC c) Tia AH cắt BC tại D. Vẽ DM vuông góc với AB tại M, DN vuông góc với AC tại N, DK vuông góc với CF tại K. Chứng minh 3 điểm M, K, N thẳng hàng. giải giùm tớ câu c thôi
Cho tam giac abc có ba góc nhọn, hai đường cao BE, CF cắt nhau tại H (EAC, FAB ).
Chứng minh: a) tam giác AEB đồng dạng với . tam giác AFC
b)CM tam giác AEF đồng dạng với TAM GIÁC ABC
c) Tia AH cắt BC tại D. Vẽ DM vuông góc với AB tại M, DN vuông góc với AC tại N, DK vuông góc với CF tại K. Chứng minh 3 điểm M, K, N thẳng hàng.
giải giùm tớ câu c thôi
Giúp mình bài này với ạ !
Cho tam giác nhọn ABC ( AB < AC ) . Ba đường cao AD, BE, CF cắt nhau tại H, AH cắt EF tại I.
a) Chứng minh tam giác ABE và tam giác ACF đồng dạng , tam giác AEF và tam giác ABC đồng dạng.
b) Vẽ FK vuông góc với BC tại K. Chứng minh AC. AE = AH. AD và CH. DK = CD . HF
c) Chứng minh \(\dfrac{EI}{ED}=\dfrac{HI}{HD}\)
d) Gọi M và N lần lượt là trung điểm của đoạn AF và đoạn CD.Chứng minh góc BME = góc BNE = 180 độ.
CHO TAM GIÁC ABC CÓ 3 GÓC NHỌN , ĐCAO BE VÀ CF CẮT NHAU TẠI H
A. CM AE.AC=AF.AB
B. TAM GIÁC AEF ĐỒNG DẠNG VS ABC
C. AH CẮT BD TẠI D , ED CẮT FC TẠI I . CMR HI.CF=HF.IC
Cho tam giác ABC nhọn (AB nhỏ hơn AC) có hai đường cao BE,CF cắt nhau tại H. Chứng minh tam giác ABC đồng dạng với tam giác AFC, chứng minh AE . AC = AF . AB và tam giác AEF đồng dạng với tam giác ABC, từ E vẽ AK vuông góc với AB tại K và N vuông góc với AC tại N chứng minh EK.EC= EF.EN và góc KNE bằng góc ECF