Answer:
Ta xét tam giác ABH (Góc AHB = 90 độ) và tam giác CAK (Góc CKA = 90 độ), có:
AB = AC
Góc A1 = góc C1
=> Tam giác ABH = tam giác CAK (cạnh huyền-góc nhọn)
=> BH = AK và AH = CK
\(\Rightarrow BH^2+CK^2=AK^2+CK^2=AC^2\)
Answer:
Ta xét tam giác ABH (Góc AHB = 90 độ) và tam giác CAK (Góc CKA = 90 độ), có:
AB = AC
Góc A1 = góc C1
=> Tam giác ABH = tam giác CAK (cạnh huyền-góc nhọn)
=> BH = AK và AH = CK
\(\Rightarrow BH^2+CK^2=AK^2+CK^2=AC^2\)
cho ABC vuông cần tại A, một đường thẳng d bất kì luôn đi qua A. Vẽ BH và CK cùng vuông gó với d tại H và K
a) CMR : tam giác ABH = CAK
b) CMR : BH2 + CK2 = AC2
Cho tam giác ABC vuông cân tại A, 1 đường thẳng d bất kì luôn đi qua A . Kẻ BH , CK vuông góc vs d . CMR tổng BH2 + CK2 luôn không đổi
cho tam giác ABC vuông cân tại A. Qua A vẽ đường thẳng d bất kì. từ B và C vẽ BH vuông góc với d, CK vuông góc với d. Chứng minh
a, Tam giác ABH = Tam giác CAK
b, chứng tỏ BH2 + CK2 không phụ thuộc vào đường thẳng d
Cho tam giác ABC vuông cân tại A. Một đường thẳng d bất kì luôn đi qua A. Kẻ BH và CK vuông góc vs đường thẳng d. Chứng minh rằng tổng BH2 + CK2 có giá trị ko đổi
Cho tam giác abc vuông cân tại A , một đường thẳng d bất kì luôn đi qua A . kẻ BH và CK vuông góc với d . chứng minh BH^2 + CK^2 không thay đổi
giúp mình nha
Cho tam giác ABC vuông cân tại A. Qua A kẻ đường thẳng d bất kì. Vẽ BH vuông góc
với d tại H, CK vuông góc với d tại K. Chứng minh rằng tổng BH2 + CK2 không phụ thuộc vào
đường thẳng d.
Cho tam giác ABC vuông cân tại A, có AC = 8cm. Một đường thẳng d bất kì luôn đi qua A. Kẻ BH và CK vuông góc với đường thẳng d. Khi đó B H 2 + C K 2 bằng:
A. 46
B. 16
C. 64
D. 48
cho tam giác ABC cân tại A, góc A nhọn. kẻ BH vuông góc AC tại H, kẻ CK vuông góc AB tại K. gọi D là giao điểm của BH và CK.
a) cmr BH=CK,
2) cmr tam giác DBC cân
3) qua D kẻ đường thẳng cắt đoạn thẳng BK tại E và cắt đoạn Thẳng CH tại F sao cho AE<À. Cmr: DE,DF
cho tam giác abc vuông cân taị a. đường thẳng d thay dổi qua a luôn cắt cạnh ac tại m ( khác b,c và mb>mc ) . kẻ bh vuông góc với d tại h và ck vuông góc với d tại k. bh kéo dài cắt ac tại e. trên cạnh ab lấy diểm d sao cho ad = aea, cmr hk= bh - ck b, gọi i là tđ của bc. cm tam giác iah = tam giác ickc, cmr md + me > ab