Cho tam giác ABC vuông tại A và AB < AC. Từ A, kẻ AH vuông góc với cạnh BC tại H. Trên đoạn thẳng HC lấy điểm D sao cho H là trung điểm của đoạn thẳng BD. Gọi O là trung điểm của đoạn thẳng CD, vẽ đường tròn tâm O đường kính CD. Đường tròn (O) vừa vẽ có điểm chung thứ hai với cạnh AC là E.
a)Chứng minh HA = HE
b)Tính số đo của góc OEH.
Cho tam giác ABC vuông tại A và AB < AC. Từ A, kẻ AH vuông góc với cạnh BC tại H. Trên đoạn thẳng HC lấy điểm D sao cho H là trung điểm của đoạn thẳng BD. Gọi O là trung điểm của đoạn thẳng CD, vẽ đường tròn tâm O đường kính CD. Đường tròn (O) vừa vẽ có điểm chung thứ hai với cạnh AC là E.
a)Chứng minh HA = HE.
b) Tính số đo của góc OEH
Cho tam giác vuông cân ABC ( AB=AC) đường cao AH. Trên đoạn thẳng HC lấy điểm K rồi dựng hcn AHKO. Lấy O làm tâm, vẽ đường tròn bán kính OK, đường tròn này cắt AB tại D, cát cạnh AC tại E. Gọi F là giao điểm thứ hai của đường tròn (O) với đường thẳng AB. CM:
a, Tam giác AEF là tam giác cân
b,DO vg góc với OE
c, D,A,O,E nằm trên cùng một đường tròn
Cho hai đường tròn (O) và (O') có cùng bán kính R cắt nhau tại 2 điểm A, B sao cho tâm O nằm trên đường tròn (O') và tâm O' nằm trên đường tròn tâm O. Đường nối tâm OO' cắt AB tại H, cắt đường tròn (O') tại giao điểm thứ 2 là C. Gọi F là điểm đối xứng của B qua O'.
a, CMR AC là tiếp tuyến của (O) và AC vuông góc với BF
b, Trên cạnh AC lấy điểm D sao cho AD = AF. Qua D kẻ đường thẳng vuông góc với OC và cắt OC tại K, cắt AF tại G. Gọi E là giao điểm của AC và BF. CM tứ giác AHO'E, ADKO nội tiếp
c, Tứ giác AHKG là hình gì? Vì sao?
d, Tính diện tích phần chung của hình (O) và (O') the bán kính R
cho tam giác vuông cân ABC tại A đường cao AH. Trên đoạn thẳng HC lấy điểm K rồi dựng hcn AHKO. Lấy O làm tâm, vẽ đường tròn bán kính OK, đường tròn này cắt cạnh AB tại D, AC tại E. Gọi F là giao điểm thứ hai của đường tron (O) vói đường thẳng AB. CMR:
a) \(\Delta\)AEF là tam giác cân
b) DO\(\perp\)OE
c) D, A, O, E nằm trên cùng một đường tròn
giúp mk vs!!
1.Từ 1 điểm A nằm ngoài đường tròn tâm O, vẽ 2 tiếp tuyến AB,AC của đường tròn tâm O( B,C là các tiếp điểm), BD là đường kính của đường tròn tâm O, AD cắt đường tròn tâm O tại E.
a)CM: AB2=AD.AE.
b)Gọi H là giao điểm của OA với BC. CMR: HC là phân giác của góc EHD.
2.Cho hình thang ABCD, trên cạnh BC lấy E sao cho BE=BC/3, trên tia đối của tia CD lấy lấy F sao cho CF=BC/2. Gọi M là giao điểm của AE và BF.
CMR: 5 điểm A,B,C,D,M cùng thuộc1 đường tròn.
3.Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn tâm O, AD là đường kính của (O), tiếp tuyến tại D của (O) cắt BC tại M. Đường thẳng MB cắt AB,AC lần lượt tại E và F.
a) CMR: MD^2=MC.MB
b) Gọi H là trung điểm của BC, CMR: MDHO là tứ giác nội tiếp.
Cho tam giác ABC điểm D thuộc cạnh BC . Gọi M,E,N theo thứ tự là trung điểm AB, AD, AC. Đường vuông góc AB tại M và đường vuông góc AC tại N cắt nhau tại O. Đường vuông góc AD tại E cắt OM,ON tại I,K.
a, Các điểm O,I,K theo thứ tự là tâm đường tròn ngoại tiếp của tam giác nào?
b, CMR A,I,O,K thuộc cùng 1 đường tròn
Bài 1: Cho tam giác ABC cân tại A, nội tiếp đường tròn(O). Đường cao AH cắt đường tròn ở D.
a) Vì sao AD là đường kính của đường tròn(O)
b) Tính góc ∠ACD
c) Cho BC = 24cm; AC = 20cm. Tính đường cao AH và bán kính đường tròn(O)
Bài 2: Cho tam giác ABC nội tiếp đường tròn (O;R). Gọi M là trung điểm BC. Giả sử O nằm trong tam giác AMC hoặc O nằm giữa A và M. Gọi I là trung điểm AC. CMR:
a) Chu vi tam giác IMC lớn hơn 2R
b) Chu vi tam giác ABC lớn hơn 4R
Bài 3: Cho tam giác ABC có D, E, F theo thứ tự là trung điểm BC, CA, AB. G, H, I theo thứ tự là chân đường cao từ đỉnh A, B, C. Trực tâm tam giác ABC là S. J, K, L theo thứ tự là trung điểm của SA, SB, SC. Chứng minh rằng: 9 điểm D, E, F, G, H, I, J, K, L cùng thuộc đường tròn. ( Gợi ý: đường tròn đường kính JD)
Bài 4: Cho tam giác ABC nội tiếp(O), H là trực tâm tam giác ABC. Gọi D, E, F thứ tự là trung điểm của BC, CA, AB. Đường tròn tâm D bán kính DH cắt BC tại A1, A2, đường tròn tâm E bán kính EH cắt CA tại B1, B2, đường tròn tâm F bán kính FH cắt AB tại C1, C2.
a) : Chứng minh 3 đường thẳng DD' , EE' , FF' đồng quy ( DD' song song với OA, EE' song songvới OB, FF' song song với OC ).
b) Chứng minh 6 điểm A1, A2, B1, B2, C1, C2 nằm trên một đường tròn.
Cho tam giác ABC vuông cân tại A có đường cao AH. Trên HC lấy K, vẽ hình chữ nhật AHKO. Vẽ đường tròn tâm O bán kính OK, đường tròn này cắt cạnh AB tại D, cắt AC tại E. Gọi F là giao điểm thứ 2 của (O) và đường thẳng AB. Chứng minh rằng:
a) Tam giác AEF vuông cân và DO vuông góc với OE
b) 4 điểm D,A,O,E cùng nằm trên 1 đường tròn