Bài 1: Tam giác ABC vuông cân tại A, M thuộc AC. Kẻ tia Ax vuông góc với BM cắt BC tại H. K là điểm đối xứng với C qua H. Kẻ tia Ky vuông góc với BM cắt AB tại I. Tính góc AIM?
Bài 2: Tam giác ABC cân tại A với góc A nhọn. CD là đường phân giác của góc ACB ( D thuộc AB ). Qua D kẻ vuông góc với CD cắt CB tại E. CMR: BD = 1/2 EC.
Cho tam giác ABC cân tại A với A là góc nhọn. CD là đường phân giác góc ACB ( D thuộc AB) qua D kẻ đường vuông góc với CD, đường này cắt đường thẳng CB tại E. Chứng minh: BD=1/2 EC
cho tam giác abc cân tại a góc a nhọn CD là đường phân giác góc ACB (d thuộc ab). qua d kẻ đường vuông góc CD, đường này cắt CN tại e. c/m : bd=1/2ec
Câu 4 : Cho tam giác ABC cân tại A với góc A nhọn, CD là đường phân giác của góc ACB (D thuộc AB) ; qua D kẻ đường vuông góc với CD cắt đường thẳng CB tại E. Chứng minh BD = 1/2EC.
Câu 5 : Cho tam giác ABC có ba góc nhọn, M là một điểm di động trên AB. Qua A, B vẽ các đường thẳng song song với CM, chúng lần lượt cắt các đường thẳng BC, CA tại P và Q. Tìm vị trí điểm M để biểu thức 1/AP + 1/BQ + 2011/CM đạt giá trị lớn nhất.
cho tam giac ABC cân tại A( A là góc nhọn). Kẻ đường phân giác góc C cắt AB tại D. Từ D kẻ đường thẳng vuông góc với CD và cắt BC tại E. Chứng minh BD=1/2EC
Cho tam giác ABC vuông tại A. Đường phân giác góc B cắt AC tại D, cho AB= 6cm, BC= 10cm
a) Tính AC, AD, CD
b) Từ D kẻ đường thẳng vuông góc với AC cắt BC tại K. Qua K kẻ đường thẳng vuông góc với BD tại E và cắt AB, AC lần lượt tại F,H. Chứng minh tam giác ABC đồng dạng tam giác DHK
C) Chứng minh BFDK: hình thoi
Cho tam giác ABC cân tại A. Trên tia đối của tia CB lấy điểm D sao cho CB = CD. Qua C kẻ đường thẳng vuông góc với BD cắt AB tại M. Chứng minh rằng MACD là hình thang
cho tam giác ABC cân tại A, AB=15cm,BC=10cm, đường phân giác của góc B cắt ac tại D
a/ tính AD, DC
b/ Đường vuông góc với BD tại B cắt đường Thẳng AC kéo dài tại E. Chứng minh BE là đường Phân giác ngoài tại đỉnh B của tam giác ACB và ính EC, EA,BD
Cho tam giác ABC nhọn, kẻ đường cao AH (H thuộc cạnh BC). Tia phân giác của góc ABH cắt AH tại I. Qua A kẻ đường thẳng vuông góc với AB, cắt tia BI tại K. Kẻ KD vuông góc với BC (D thuộc BC). a) Chứng minh rằng: tam giác AKD cân. b) Chứng minh rằng: BK vuông gióc với AD . Từ đó suy ra I là trực tâm của tam giác ABD. c) Trên tia đối của tia HA lấy điểm E sao cho HE = HI. Chứng minh rằng AKDE là hình thang cân. d) Nếu biết rằng ADE 3ADK , tính số đo ABC.