Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Anh Quân

Cho tam giác ABC cân tại A. Vẽ đường tròn tâm O thuộc cạnh BC và tiếp xúc với cạnh AB, AC lần lượt tại D và E. Gọi I là điểm chuyển động trên cung nhỏ DE ( I khác D, E). Tiếp tuyến của đường tròn tại I cắt cạnh AB, AC lần lượt tại M và N.

a. Chứng minh rằng: chu vi tam giác AMN không đổi

b. Chứng minh: \(BC^2=4BM.CN\)

c. Xác định vị trí điểm I trên cung nhỏ DE để tam giác AMN có diện tích lớn nhất

Nguyễn Việt Lâm
4 tháng 12 2018 lúc 14:23

Chẳng bao giờ muốn làm hình vì câu nói kèm theo "nhớ vẽ hình giúp mình luôn".

Cho nên, bạn tự vẽ hình :D

Do (O) tiếp xúc với cả AB và AC => k/c từ O đến AB và AC là bằng nhau =>O nằm trên phân giác góc \(\widehat{A}\) => O là trung điểm BC => O cố định

Do đó ta có D và E đều là các điểm cố định.

Theo tính chát các tiếp tuyến cắt nhau, ta có \(\left\{{}\begin{matrix}MI=MD\\NI=NE\end{matrix}\right.\)

\(\Rightarrow MN=MI+IN=MD+NE\)

\(\Rightarrow\) Chu vi \(\Delta AMN=AM+MN+AN=AM+MD+NE+AN=AD+AE\)

Do D và E cố định \(\Rightarrow AD+AE=const\Rightarrow\) chu vi AMN ko đổi

b/ Vẫn theo tính chất 2 tiếp tuyến cắt nhau, ta có:

\(\left\{{}\begin{matrix}\widehat{IOM}=\widehat{DOM}\\\widehat{ION}=\widehat{EON}\end{matrix}\right.\) \(\Rightarrow\widehat{MON}=\dfrac{1}{2}\widehat{DOE}\)

Trong tứ giác AEOD \(\left\{{}\begin{matrix}\widehat{D}=90^0\\\widehat{E}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{A}+\widehat{DOE}=180^0\Rightarrow\widehat{DOE}=180^0-\widehat{A}\)

\(\Rightarrow\widehat{MON}=\dfrac{180^0-\widehat{A}}{2}\) .

Lại có ABC cân \(\Rightarrow\widehat{B}=\widehat{C}=\dfrac{180^0-\widehat{A}}{2}\Rightarrow\widehat{MON}=\widehat{B}=\widehat{C}\)

Xét \(\Delta MON\)\(\Delta MBO\) : \(\left\{{}\begin{matrix}\widehat{NMO}=\widehat{OMB}\\\widehat{MON}=\widehat{B}\end{matrix}\right.\) \(\Rightarrow\Delta MON\sim\Delta MBO\)

\(\Rightarrow\widehat{BOM}=\widehat{ONM}\)

\(\widehat{ONM}=\widehat{ONC}\Rightarrow\widehat{BOM}=\widehat{ONC}\), hơn nữa \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\Delta BOM\sim\Delta CNO\Rightarrow\dfrac{BO}{CN}=\dfrac{BM}{CO}\Rightarrow OB.OC=CN.BM\)

\(\Rightarrow\left(\dfrac{BC}{2}\right)^2=BM.CN\Rightarrow BC^2=4BM.CN\)

c/ \(S_{AMN}=S_{ABC}-S_{BCNM}\Rightarrow S_{AMN}\) lớn nhất khi \(S_{BCNM}\) nhỏ nhất

Lại có \(S_{BCNM}=S_{BOM}+S_{MON}+S_{ONC}=\dfrac{1}{2}\left(OD.BM+OI.MN+OE.NC\right)\)

\(=\dfrac{R}{2}\left(BD+DM+MN+NE+EC\right)\) do \(OD=OI=OE=R\)

Dễ dàng chứng minh \(\Delta BOD=\Delta COE\left(ch-gn\right)\) \(\Rightarrow BD=CE\)

\(\Rightarrow S_{BCNM}=\dfrac{R}{2}\left(2BD+2MN\right)=R\left(BD+MN\right)\) (do \(DM+NE=MN\) )

Ta có R và BD cố định \(\Rightarrow S_{BCNM}\) nhỏ nhất khi \(MN\) nhỏ nhất

\(\Rightarrow I\) trùng giao điểm của OA và đường tròn hay I nằm chính giữa cung nhỏ DE

Vũ Anh Quân
4 tháng 12 2018 lúc 12:10

Nguyễn Việt Lâm

Akai Haruma

Trần Trung Nguyên

Chỉ em với ạ ☺Câu nào cũng được ạ, em cần ít nhất là 1 câu


Các câu hỏi tương tự
Angela jolie
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Music Hana
Xem chi tiết
Thiên Thương Lãnh Chu
Xem chi tiết
Nguyễn Hoàng Minh
Xem chi tiết
ngọc linh
Xem chi tiết
ngọc linh
Xem chi tiết
Phạm Thế Duy
Xem chi tiết