Cho tam giác ABC cân ở A. Gọi D, F lần lượt là trung điểm của AB, AC. Các đường trung trực của AB, AC cắt nhau tại O. Gọi G, E tương ứng là trọng tâm của tam giác ABC và ACD. Gọi H là trung điểm của BC. Từ G kẻ đường thẳng song song với AC cắt BC tại I. CM:
a) GH/AD = HI/DO
b) ADG đồng dạng với DOE
c) OE vuông góc với CD
Cho tam giác cân ở A. Gọi D, F lần lượt là trung điểm của AB, AC. Các đường trung trực AB, AC cắt nhau tại O. Gọi G và E tương ứng là trọng tâm tam giác ABC và ACD. Gọi H là trung điểm của BC. Từ G kẻ đường thẳng song song với AC cắt BC tại I. CM:
a)GH/AD = HI/DO
b)ADG đồng dạng với DOE
c)OE vuông góc với CD
Cho tam giác ABC có ba góc nhọn nội tiếp (O), M là điểm thuộc cung nhỏ AC. Vẽ MH vuông góc với BC tại H, MI vuông góc AC tại I
a, Chứng minh I H M ^ = I C M ^
b, Đường thẳng HI cắt đường thẳng AB tại K. Chứng minh MK vuông góc vói BK
c, Chứng minh tam giác MIH đồng dạng vói tam giác MAB
d, Gọi E là trung điểm của IH và F là trung điểm AB. Chứng minh tứ giác KMEF nội tiếp từ đó suy ra ME vuông góc vói EF
Cho tam giác ABC (AB < AC), có ba góc nhọn nội tiếp đường tròn (O). M là một điểm trên cung nhỏ AC sao cho MA < MC. Vẽ MH vuông góc với BC tại H. MT vuông góc với AC tại M.
a) Chứng minh rằng: góc IHM = góc HMI
b) Chúng minh rằng: tam giác BMA đồng dạng với tam giác HMI
c) Gọi E là trung điểm của HI, F là trung điểm của AB, chứng minh ME vuông góc với EF
Cho tam giác ABC cân tại A , từ trung điểm H của cạnh đáy BC kẻ HE vuông AC . Gọi O là trung điểm của HE . Chứng minh BE vuông góc AO
Cho tam giác ABC vuông can đỉnh A, M là trung điểm của cạnh BC, I là điểm bất kì thuộc cạnh BC . Kẻ IH vuông góc với AB ( H thuộc AB) , IK vuông góc với AC ( K thuộc AC) . Chung minh : tam giác MHK vuông cân
Cho tam giác ABC có 3 góc đề nhọn và góc BAC=45 độ. Hai đường cao BD, CE cắt nhau tại H. Gọi I là trung điểm của DE ,kẻ EM vương góc với AC ( M thuộc AC), kẻ DN vuông góc với AB ( N thuộc AB). Gọi O là trung điểm của EM và DN
a. tứ giác EHDO là hình gì ?
b, Chứng minh HC=2NO
c, Chứng minh đường thẳng HI đi qua trọng tâm tam giác ABC
cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (0). M là điểm thuộc cung nhỏ AC. vẽ MH vuông góc với BC, vẽ MI vuông AC tại I, chứng minh:
1. IHM=ICM
2.đường thẳng HI cắt đường thẳng AB tại K,. chứng minh: MK vuông BK
3. DF cắt EB tại M, HF cắt EC tại N. chứng minh tam giác MIH đồng dạng với MAB
4, gọi E là trung điểm IH và F là trung điểm AB. chứng minh tứ giác KMEF nội tiếp, suy ra ME vuông góc với EF
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E lần lượt là hình chiếu của H trên AB,AC. Biết AB=4cm, AC=6cm.
a) Chứng minh : AD.AB=AE.AC
b) Tính độ dài AE
c) Kẻ phân giác AI của góc BAC. Tính độ dài HI
d) Đường thẳng vuông góc với DE tại D cắt BC tại M. Chứng minh M là trung điểm của BH
Bài 2 : Cho tam giác ABC vuông ở A. Gỉa sử D là 1 điểm trên cạnh huyền BC và E.F lần lượt là hình chiếu của D lên các cạnh AB, AC. CMR : AE.EB + AF.FC=BD.DC