-ΔABD và ΔACD có
AB = AC
∠(BAD) = ∠(CAD) (do AD là tia phân giác góc A)
AD chung
Nên ΔABD = ΔACD ( c.g.c)
⇒ ∠(ABD) = ∠(ACD) (hai góc tương ứng)
-ΔABD và ΔACD có
AB = AC
∠(BAD) = ∠(CAD) (do AD là tia phân giác góc A)
AD chung
Nên ΔABD = ΔACD ( c.g.c)
⇒ ∠(ABD) = ∠(ACD) (hai góc tương ứng)
Bài 3: Cho tam giác ABC cân tại A . Gọi D là trung điểm BC . Qua A vẽ d// BC . CMR
a; Tam giác ABD = ACD
b; AD là tia phân giác của góc BAC
c; AD vuông góc d
Bài 4: Cho tam giác ABC có góc A= 60độ Tia phân giác của góc ABC cắt tia phân giac của góc ACB ở I
a; Cho biết tam giác ABC= 2 tam giác ACB. Tính góc ACB
b; Tính số đo góc BIC
1. Cho tam giác ABC cân tại A, có AB= 5cm, BC= 6cm, tia phân giác AD của góc BAC cắt đường trung tuyến BE của tam giác tại G. Tia CG cắt AB tại F
a. So sánh số đo của góc ABC và góc BAC
b. Chứng minh: tam giác ABD= tam giác ACD
c. Chứng minh: F là trung điểm của AB
d. Tính độ dài BG
2. Cho tam giác ABC vuông tại A có AB= 6cm, AC= 8cm. Tia phân giác của góc ABC cắt AC tại D, kẻ DE vuông góc với BC
a. Tính BC
b. Chứng minh: tam giác BDA= tam giác BDE
c. Chứng minh: AD < DC
d. Gọi K là giao điểm của AB và DE. Chứng minh: AE // KC
Cho tam giác ABC vuông tại A, đường cao AH. Tia phân giác của góc HAC cắt BC tại D.
a, Chứng minh tam giác ABD cân
b, Tia phân giác góc B cắt AH tại I.
Chứng minh DI song song với AC
c, So sánh độ dài HD và DC
Cho tam giác ABC vuông tại A , tia phân giác của góc BAC cắt BC tại D
a) Chứng minh tam giác ABD = tam giác ACD
b) tính góc ABC
cho tam giác ABC vuông tại A . Kẻ AH vuông góc với BC , Tia phân giác của góc HAB cắt Bc ở D . Tia phân giác của góc HAC cắt BC ở E.
a) Chứng Minh các tam giác ABE và ACD là tam giác cân
b) gọi I là giao điểm của các tia phân giác của tam giác ADE
cho tam giác ABC,góc A =90,góc B=60.tia phân giác góc B cắt Ac tại D.Từ D kẻ DH vuông góc với BC cân tại H
a,Tính số đo góc C. So sánh các cạnh của tam giác ABC
b,C/M tam giác ABD=tam giác AHBD.So sánh AD và DC
c, C/M tam giác DBC cân
d. Qua B kẻ đường thẳng vuông góc với AB cắt đg thẳng DH tại K . C/M tam giác DBK đều
cho tam giác abc cân tại a . qua b kẻ đường thẳng vuônng góc ab , qua c kẻ đường thẳng vuông góc ac , chúng cắt nhau tại d . a, chứng minh tam giác abd bằng tam giác acd . b, chứng minh ad là tia phân giác của góc a , da là tia phân giác của góc d . c, chứng minh tam giác bdc cân . d, chứng minh ad là trung trực của bc . CÁC BẠN VẼ HÌNH VÀ GIẢI HỘ MÌNH VỚI Ạ , MÌNH CẢM ƠN .
1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là 2 tia phân giác của góc xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC cân tại A, trên tia đối của tia BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB, EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC (H thuộc BC).
Tia phân giác của H A B ^ cắt BC ở D.
a) Chứng minh tam giác ACD là tam giác cân.
b) Các tia phân giác của H A C ^ và A H C ^ cắt nhau ở I. Chứng minh. CI đi qua trung điểm, của AD. Từ đó tính góc A I C ^ .