Cho tam giác ABC cân tại A, nội tiếp đường tròn (O). Lấy điểm I trên cung nhỏ AC, hai đường thẳng AI và BC cắt nhau tại K. Chứng minh: AB2 = AI. AK.
cho tam giác abc nội tiếp đường tròn đường kính ab. gọi I là điểm chính giữa cung nhỏ bc. trên đoạn ob lấy điểm m. tia im cắt đường tròn tâm o tại e, ce cắt ai tại K. qua m kẻ đường thẳng song song với ac cắt ce tại f. chứng minh mf=mb
Cho tam giác ABC có ba góc nhọn ( AB bé hơn AC ) nội tiếp trong đường tròn tâm O. Hai đường cao BE và CF của tam giác ABC cắt nhau tại H.
a) chứng minh các tứ giác AEHF, BFEC nội tiếp được đường tròn
b) tia AH cắt BC tại D, kẻ đường kính AK của đường tròn tâm O. Chứng ming AB.AC= AD.2R
c) đường thẳng EF cắt đường tròn tâm O tại hai điểm M và N ( M thuộc cung nhỏ AB ). Chứng minh AM = AN
d) vẽ đường tròn tâm i đường kính AH cắt đường tròn tâm O tại S ( S khác A ), đường thẳng SA và BC cắt nhau tại T. Chứng minh ba điểm T, M, N thẳng hàng
Cho tam giác nhọn ABC nội tiếp đường tròn O và AB < AC. Gọi H là trực tâm của tam giác ABC. Gọi L là giao điểm của đường thẳng AH với đường tròn O . Lấy điểm F bất kì trên cung nhỏ LC (F không trùng với L hoặc C). Lấy điểm K sao cho đường thẳng AC là đường trung trực của FK.
1. Chứng minh tứ giác AHKC nội tiếp đường tròn.
2. Đường thẳng HK cắt AC tại điểm I, đường thẳng AF cắt HC tại G. Chứng minh hai đường thẳng AO và GI vuông góc v
Cho tam giác ABC cân tại A và nội tiếp đường tròn (O) đường kính AK; lấy điểm I thuộc cung nhỏ AB của đường tròn (O)(I≠A,B). Gọi M là giao điểm của IK và BC, đường trung trực của đoạn thẳng IM cắt AB và AC lần lượt tại D và E. Chứng minh rằng tứ giác ADME là hình bình hành.
Cho tam giác abc có ba góc nhọn nội tiếp đường tròn tâm O Trên cạnh BC lấy điểm d d khác B phẩy C sao cho đường thẳng vuông góc với BC tại D cắt cung nhỏ AC tại đường tròn tâm O tại M Gọi E là hình chiếu của M trên AC
a Chứng minh tứ giác CDME nội tiếp đường tròn
b/chứng minh MA x MB = MB x ME
C/Gọi i k lần lượt là trung điểm của AB và de chứng minh EK vuông góc với MK
Cho tam giác nhọn ABC ( AB<AC) nội tiếp đường tròn (O). Gọi E là điểm chính giữa của cung nhỏ BC. Trên cạnh AC lấy điểm M sao cho EM=EC, đường thẳng BM cắt đường tròn (O) tại N ( N khác B). Các đường thẳng EA và EN cắt cạnh BC lần lượt tại D và F.
a) Chứng minh tam giác AEN đồng dạng với tam giác FED
b) Chứng minh M là trực tâm của tam giác AEN
c) Gọi I là trung điểm của AN, tia IM cắt đường tròn (O) tại K. Chứng minh đường thẳng CM là tiếp tuyến của đường tròn ngoại tiếp tam giác BMK
1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)
2)Cho tam giác ABC (AB<AC) nội tiếp đường tròn (O), đường trung tuyến AM. Lấy điểm D trên cung BC không chứa A sao cho góc BAD= góc CAM. Chứng minh góc ADB= góc CDM
3)Cho tam giác ABC nội tiếp đường tròn O tại D. Đường tròn (D;DB) cắt đường thẳng AB tại Q (khác B), cắt đuòng thẳng AC tại P (khác C). Chứng minh rằng AO vuông góc PQ
Các bạn giúp mình nhé để mình làm cho xong bài tập kẻo xuân này con không về
cho tam giác ABC nhọn (AB<AC) nội tiếp ường tròn tâm O. Hai đường cao BE và CF cắt nhau tại H
a) chúng minh AEHF và tứ giác BCEF là các tứ giác nội tiếp được
b)đường thẳng EF cắt đường thẳng BC tại M. Chứng minh tam giác MFC đòng dạng tam giác MBE
c) vẽ đường kính AK của đường tròn (O). chúng minh AK vuông goác EF
d)đường thẳng HK cắt đường tròn O tại I(I khác K). chúng minh 3 điểm A,I,M thẳng hàng