Cho tam giác ABC cân tại A. Các điểm M, N theo thứ tự chuyển động trên các cạnh AB, AC sao cho AM = CN. a) Chứng minh đường tròn ngoại tiếp tam giác AMN luôn đi qua một điểm cố định khác A. b) Tìm quỹ tích tâm đường tròn ngoại tiếp tam giác AMN
cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm M di động, trên tia đối của tia AC lấy điểm N sao cho BM=CN. CMr: đường tròn ngoại tiếp tam giác AMN luôn đi qua 1 điểm cố định khác A
Cho điểm M thuộc đáy BC của tam giác cân ABC. Kẻ các đường thẳng song song với các cạnh bên cắt AB, AC lần lượt tại D, E . I là điểm đối xứng với m qua DE. Chứng minh :
a) I thuộc đường tròn ngoại tiếp tam giác ABC
b)Khi M di chuyển trên BC thì IM luôn đi qua 1 điểm cố định
Cho (O;R) và dây cung BC cố định (BC<2R).Điểm A di động trên đường tròn sao cho tam giác ABC nhọn,Gọi AD là đường cao của tam giác ABC và H là trực tâm tam giác ABC
a)Đường thẳng chứa tia phân giác góc ngoài góc BHC cắt AB,AC lần lượt tại M,N.Chưng minh tam giác AMN cân
b)Gọi E,F lần lượt là hình chiếu của D trên BH,CH.Chứng minh OA vuông goác với EF
c)Đường tròn ngoại tiếp tam giác AMN cắt đường phân giác góc trong của goác BAC tại K.Chứng minh rằng đường thẳng HK luôn đi qua 1 điểm cố định
Cho tam giác ABC nhọn; AB<AC. Điểm D thay đổi trên BC. Điểm M và N nằm trên AB,AC tương ứng sao cho BM=MD; ND=NC. Chứng minh rằng:
a) Đường tròn ngoại tiếp tam giác AMN đi qua điểm O là tam đường tròn ngoại tếp tam giác ABC.
b) đường thẳng đi qua D và vuông góc với MN luôn đi qua 1 điểm cố định
cho tam giác cân ABC . Tren cạnh AB lấy M di động , tia đối với tia CA lấy N sao cho BM=CN . CM đường tròn ngoại tiếp AMN luôn đi qua 1 điểm cố định
cho đường tròn (O;R) có BC là dây cố định (BC<2R) ; E là điểm chính giữa cung nhỏ BC. gọi A là điểm di động trên cung lớn BC và AB<AC (A khác B). trên đoạn AC lấy điểm D khác C sao cho ED=EC. tia BD cắt đường tròn (O;R) tại điểm thứ hai là F.
a) chứng minh D là trực tâm của tam giác AEF.
b) gọi H là trực tâm tam giác DEC ; DH cắt BC tại N. đường tròn ngoại tiếp tam giác BDN cắt đường tròn (O;R) tại điểm thứ hai là M. chứng minh đường thẳng DM luôn đi qua một điểm cố định.
Tam giác ABC cân tại A (góc À tù). Trên tia đối của tia AC lấy điểm T. Qua T kẻ đường thẳng song song với AB cắt BC tại M, qua M kẻ đường thẳng song song với AC cắt AB tại N. Chứng minh rằng: đường tròn ngoại tiếp tam giác ATN luôn đi qua một điểm cố định khác A.
cho tam giac ABC. Trên tia AB, CB lấy điểm P và Q sao cho AP=CQ=p (p là nửa chu vi của tam giác ABC) . BK là đường kính đường tròn (O) ngoại tiếp tam giác ABC. (O',r) là đường tròn nội tiếp tam giác ABC.
a) C/m: KO' vuông goc voi PQ
b) Gọi M là một điểm di động trên tia AB (M khac A va B) , N là điểm di động trên tia AC sao cho AM+AN=AB=AC không đổi. C/m trung điểm của MN luôn chay trên một đoạn thẳng cố định. Tìm vị trí của M,N để MN min
c) Qua O' kẻ các đường thẳng song song voi cac cạnh của tam giác. Mỗi đường thẳng này cắt hai cạnh còn lại của tam giác tao thành các đoạn thẳng MN, PQ, KL. C/m: MN2+PQ2+KL2≥16r2