Cho tam giác ABC cân tại A. Lấy điểm E thuộc cạnh AB , lấy điểm D thuộc tia đối của tia CA sao cho: AE + AD = AB + AC. Kẻ đường thẳng qua C và song song với DE cắt đường thẳng qua E và song song với DC tại F. Chứng minh rằng: a)C/m tam giác EFC = tam giác CDE . b) C/m tam giác FEB cân
1. Cho tam giác ABC cân tại A. Lấy điểm E thuộc cạnh AB , lấy điểm D thuộc
tia đối của tia CA sao cho: AE + AD = AB + AC. Kẻ đường thẳng qua C và
song song với DE cắt đường thẳng qua E và song song với DC tại F. Chứng
minh rằng:
a) tam giác AFC = tam giác CDE
b) tam giác FEB cân
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm E. Trên tia đối của tia CA lấy điểm F sao cho BE = CF. Nối È cắt BC tại O. Kẻ EI song song với AF ( I thuộc BC ). a, CMR: tam giác BEI là tam giác cân b, CMR: OE = OF c, Đường thẳng qua B và vuông góc với BA cắt đường thẳng qua C và vuông góc với AC tại K. Chứng tỏ tam giác EKF là tam giác cân và OK vuông góc với EF
1. Cho tam giác ABC có AD là phân giác (AD thuộc BC). Qua D kẻ đường thẳng song song với AB, cắt AC tại E. Qua E kẻ đường thẳng song song với BC, cắt AB tại K. Chứng Minh:
a) Tam giác AED là tam giác cân
b) AE = BK
2.Trên cạnh huyền BC của tam giác vuông ABC, lấy các điểm D và E sao cho BD = BA, CE = CA. Tính DAE
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Lấy G thuộc cạnh AC sao cho AG = AC. Tia DG cắt BC tại E. Qua E vẽ đường thẳng song song với BD, qua D vẽ đường thẳng song song với BC, hai đường thẳng này cắt nhau tại F. Gọi M là giao điểm của EF và CD. Chứng minh: a) G là trọng tâm tam giác BCD. b) , từ đó suy ra EC = DF
Bài 2: cho tam giác ABC có AB<AC.Tia phân giác góc A cắt cạnh BC tại D . Trên cạnh AC lấy điểm E sao cho AB=AE.
a,chứng minh BD=DE.
b,tia AD cắt cạnh AB kéo dài tại K. chứng minh tam giác KBD = tam giác CBD
c,qua k kẻ đường thẳng song song với BC cắt tia AD tại N. chứng minh tam giác KND cân
d, chứng minh DN và CK cắt nhau tại chung điểm của mỗi dc
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Lấy G thuộc cạnh AC sao cho A G = 1 3 A C . Tia DG cắt BC tại E. Qua E vẽ đường thẳng song song với BD, qua D vẽ đường thẳng song song với BC, hai đường thẳng này cắt nhau tại F. Gọi M là giao điểm của EF và CD.
Chứng minh:
a) G là trọng tâm tam giác BCD;
b) ∆ B E D = ∆ F D E , từ đó suy ra EC = DF;
c) ∆ D M F = ∆ C M E ;
d) B, G, M thẳng hàng.
Cho tam giác ABC vuông cân tại A, D là trung điểm của AC. Từ A kẻ
đường thẳng vuông góc với BD, cắt BC tại E. Đường thẳng d đi qua C và song
song với AB cắt AE tại G. Trên tia đối của tia DE lấy điểm F sao cho DE = DF.
a) Chứng minh tam giác ECG cân
b) Chứng minh AE = 2DF