BN HAY ĂN SẴN HÈ
BN HAY ĂN SẴN HÈ
Cho tam giác ABCD cân tại A. Trên AB lấy M, AC lấy N sao cho AM = CN. I là trung điểm MN. Kéo dài AI cắt Bc tại D. Chứng minh AMDN là hình bình hành.
Cho tam giác ABC cân tại A. M thuộc AB, N thuộc AC sao cho AM = CN. I là trung điểm của MN. Kéo dài AI cắt BC tại D. Chứng minh AMDN là hình bình hành.
Cho tam giác ABC có O là trung điểm của cạnh AC. Trên tia BO lấy điểm D sao cho OD=OB.
a. Chứng minh tứ giác ABCD là hình bình hành.
b. Trên cạnh BC lấy điểm M,N sao cho BM=MN=NC. Tia NO cắt AD,AB lần lượt tại I và K. Chứng minh AI=NC và AM song song với IN.
Bài 1:Cho hình thang cân ABCD (Ab song song với CD)có AB=Ad và BD=DC.Tính các góc của hình thang này.
Bài 2:Cho tam giác ABC đều.Vẽ đường vuông góc với BC tại C cắt AB tại E.Vẽ đường vuông góc với AB tại A cắt BC tại F.Chứng minh rằng ACFE là hình thang cân.
Bài 3:Cho tam giác ABC cân tại A ,M là điểm bất kì nằm giữa A và B.Trên tia đối của CA lấy điểm N sao cho CN=BM.Vẽ ME và NF lần lượt vuông góc với đường thẳng BC.Gọi I là giao điểm của MN và BC.
a)Chứng minh : IE=IF
b)Trên cạnh AC lấy điểm D sao cho CD=CN.Chứng minh rằng BMDC là hình thang cân.
Bài 4:Cho tam giác ABC cân ở A ;M là trung điểm của BC.Trên tia AM lấy điểm N;BN cắt AC ở D,CN cắt AB ở E.Chứng minh BEDC là hình thang cân
Bài 5:Cho hình thang cân ABCD (AB song song với CD) ; góc D=60 độ,AD=AB
a)Chứng minh :DB là phân giác góc ADC
b)Chứng minh : DB vuông góc với BC
#Toán_8 CÁC anh chị (các bạn ) giải giúp em mấy bài này với!
Bài 1: Tam giác ABC vuông cân tại C. Trên cạnh AC, BC lấy lần lượt các điểm P,Q sao cho AP=CQ. Từ P vẽ PM song song với BC. (M thuộc AB).
a) Chứng minh PCMQ là hình chữ nhật
b) Gọi I là trung điểm MQ. CHứng minh rằng khi P di chuyển trên cạnh AC; Q di chuyển trên cạnh BC thì I di chuyển trên một đoạn thẳng cố định.
Bài 2: CHo tam giác ABC. Gọi O là một điểm thuộc miền trong tam giác. M ,N,P,Q lần lượt là trung điểm các đoạn OB , OC, AC và AB.
a) CM MNPQ là hình bình hành
b) Xác định vị trí của O để MNPQ là hình chữ nhật.
Bài 3: Cho tam giác ABC (AB<AC) . Trên AB lấy điểm D. Trên AC lấy điểm E sao cho BD=CE. Gọi I ; K lần lượt là trung điểm của BC và DE. Kéo dài IK cắt AB; AC lần lượt tại M và N. CMR: tam giác AMN cân.
) Cho hình bình hành ABCD (AB>BC). Trên các cạnh AB và DC lần lượt lấy hai điểm M và N sao cho AM = CN; (M và N không trùng với trung điểm của AB và CD).
a) Tứ giác BMDN là hình gì? Vì sao?
b) Chứng minh rằng các đường thẳng AC, BD, MN cùng cắt nhau tại một điểm
c) Lấy điểm E đối xứng với D qua A. Gọi P là trung điểm của AB. Chứng minh E và C đối xứng với nhau qua P.
1) Cho hình bình hành ABCD, trên cạnh AB và CD lần lượt lấy M và N sao cho AM=DN. Đừng trung trực của BM lần lượt cắt MN và BC tại E và F.
a)Chứng minh: E và F đối xứng qua AB
b)Chứng minh: MEBF là hình thoi
c)Hình bình hành ABCD cần thêm điều kiện gì để BCNE là hình thang cân
2)Cho hình bình hành ABCD, trên đường chéo AC lấy hai điểm M và N sao cho AM=CN <1/2 AC a)BNDM là hình gì?
b)BM cắt AD tại K. Xác định vị trí của M để K là trung điểm của AD
3)Cho tam giác ABC cân tại A, BM và CN là đường trung tuyến cắt nhau tại G. Gọi E,F lần lượt là trung điểm của BG và CG. Biết: EFMN là hình chữ nhật; AB=25cm; BC=14cm, tính diện tích EFMN?
Cho hình bình hành ABCD. Trên các cạnh AB và CD lần lượt lấy các điểm M và N sao cho AM = DN. Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E và F. a) Chứng minh tứ giác AMND là hình bình hành. b) Chứng minh rằng tứ giác MEBF là hình thoi. c) Hình bình hành ABCD phải có thêm điều kiện gì để tứ giác BCNE là hình thang cân.
Cho tam giác ABC (AB<AC). Trên tia đối của tia BA lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho BM=CN. Gọi D,E,P,Q lần lượt là trung điểm của BC,MN,MC,NB.
a)DQ cắt AM tại J. Chứng minh rằng góc PEQ=góc MJQ
b) DE cắt AN tại I. Chứng minh rằng DE song song với phân giác góc BAC