Cho tam giác ABC cân tại A, kẻ đường cao AH. Lấy O là trung điểm AH. BO cắt AC tại D, CO cắt AB tại E. Kẻ CN vuông góc với Bo tại N, AM vuông góc với BO tại M. Chứng minh CN = 2AM
Cho tam giác ABC cân tại A, kẻ đường cao AH. Lấy O là trung điểm AH. BO cắt AC tại D, CO cắt AB tại E. Kẻ CN vuông góc với Bo tại N, AM vuông góc với BC tại M. Chứng minh CN = 2AM
Cho tam giác ABC cân tại A, kẻ đường cao AH. Lấy O là trung điểm AH. BO cắt AC tại D, CO cắt AB tại E. Kẻ CN vuông góc với Bo tại N, AM vuông góc với BC tại M. Chứng minh CN = 2AM
cho tam giác ABC vuông ở A, AH là đường cao, kẻ HN vuông góc AB, HM vuông góc AC. Gọi O trung điểm MN. Từ A kẻ Ax vuông góc BO tại K và Ax cắt BC tại I. Cmr: I là trung điểm HC
Cho tam giác ABC vuông tại A, AB=6, AC=8,đường cao AH,đường phân giác BD. kẻ DK vuông góc với BC, DK cắt AB tại M.
a, Tính BC,AH
b, CM: tam giác KBM đồng dạng tam giác KDC
c, Gọi O là giao điểm của AH và BD. CM: \(AB\cdot BO=BH\cdot BD\)
d,Tính CD
cho tam gsc ABC vuông tại A, đường cao AH. kẻ đường phân giác góc B của tam giác ABC cắt AH tại E . trên AB lấy M, trên AC lấy N sao cho AM/AB=CN/AC. CMR góc NHM = 90 độ
cho tam giác ABC vuông tại A(AC>AB), đường cao AH(H thuộc BC). Tia phân giác trong goc HAC cắt HC tại M, gọi N là trung điểm AC. a)Cm tam giác AHB đồng dạng với CHA rồi suy ra MH/MC=HB/AB b)MN cắt AH tại E và cắt AB tại F, Cm AM//BE. Kẻ MG vuông góc với AB. Cm 2/FG=1/FA + 1/FB
cho tam giác ABC vuông tại A(AC>AB), đường cao AH(H thuộc BC). Tia phân giác trong goc HAC cắt HC tại M, gọi N là trung điểm AC. a)Cm tam giác AHB đồng dạng với CHA rồi suy ra MH/MC=HB/AB b)MN cắt AH tại E và cắt AB tại F, Cm AM//BE. Kẻ MG vuông góc với AB. Cm 2/FG=1/FA + 1/FB
cho tam giác ABC có đg cao AH. Từ A kẻ Ax vuông góc với AC, từ B kẻ tia By song song với AC. Hai tia này giao nhau tại M. Nối M với trung điểm I của AB, MI cắt AC tại N, BN cắt AH tại O.
a) AMBN là hình gì?
b) CM: CO vuông góc AB