Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Online Math ( Admin@gmai...

Cho tam giác ABC cân tại A. Gọi G là trọng tâm, I là điểm nằm trong tam giác và cách đều ba cạnh của tam giác đó. Chứng minh ba điểm A, G, I thẳng hàng.

Kiệt Nguyễn
17 tháng 2 2019 lúc 11:58

                             Giải

Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

- Gọi M, N là trung điểm CA và BA.

ΔABC cân tại A có BM, CN là đường trung tuyến ứng với cạnh AC, AB.

⇒ BM = CN ( chứng minh ở bài 26)

Mà \(GB=\frac{2}{3}BM;GC=\frac{2}{3}CN\)(Tính chất trọng tâm của tam giác)

⇒ GB = GC

- ΔAGB và ΔAGC có

AG chung

AB = AC (do ΔABC cân tại A)

GB = GC (chứng minh trên)

⇒ ΔAGB = ΔAGC (c.c.c)

\(\Rightarrow\widehat{BAG}=\widehat{CAG}\)( hai góc tương ứng )

\(\Rightarrow\)G là trọng tâm của \(\widehat{BAC}\)

- Theo đề bài I cách đều ba cạnh của tam giác

Dựa vào chứng minh bài 36 ⇒ I là điểm chung của ba đường phân giác

⇒ I thuộc tia phân giác của \(\widehat{BAC}\)

Vì G, I cùng thuộc tia phân giác của  \(\widehat{BAC}\)nên A, G, I thẳng hàng


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Duy trần
Xem chi tiết
FC Đông Nhi
Xem chi tiết
Võ Trang Nhung
Xem chi tiết
ahnjaew
Xem chi tiết
Đinh Ngọc Phương Quyên
Xem chi tiết
Đỗ Đức Duy
Xem chi tiết
Pham Trong Bach
Xem chi tiết
bui dinh duc
Xem chi tiết