cho tam giác ABC và điểm K thuộc cạnh BC sao cho KB = 2KC, L là hình chiếu của B trên AK, F là trung điểm BC, góc KAB bằng 2 lần góc KAC. CHứng minh rằng FL vuông góc với AC
Cho tam giác ABC nội tiếp trong 1 đường tròn. M là điểm bất kì trên cung AC( không chứa điểm B). Kẻ MH vuông góc AC
; Mk vuông góc BC. Gọi P,Q tương ứng là trung điểm của AB và KH. Chứng minh rằng tam giác PQM là tam giác vuông
Cho hình vuông ABCD tâm O, cạnh hình vuông bằng 10cm. Gọi I là 1 điểm bất kì nằm trên nửa đường tròn đi qua 3 điểm A,O,D không chứa điểm O. IO cắt cạnh BC tại J. Cạnh DK của hình bình hành IJKD cắt BC tại E, EH là đường cao của tam giác EKJ.
a)Tính số đo của góc HEK
b) Chứng minh rằng IJ>10 căn 2 cm
Cho tam giác ABC ( AC > AB ) nội tiếp ( O ) , D là điểm trên cạnh BC thõa mãn góc BAD bằng góc CAO . Đường thẳng AD cắt ( O ) tại E . Gọi I , J , M lần lượt là trung điểm của BE , AC , OD . Chứng minh : I , M , J thẳng hàng .
cho tam giác nhọn ABC, các đường cao BD và CE, O là trung điểm BC.
a/ chứng minh 4 điểm B, E, D, C cùng thuộc đường tròn (O)
b/ chứng minh ED < BC
c/ gọi H là giao điểm của BD và CE. Trên 2 đoạn HB, HC lấy M, N sao cho AMC =ANB = 900. chứng minh AMN là tam giác cân
Cho tam giác đều ABC với O là trung điểm của BC. Một góc xOy = 60 độ có cạnh Ox cắt AB tại M, cạnh Oy cắt AC tại N
a)Chứng minh tam giác OBM đồng dạng với tam giác NCO và BC^2 = 4BM . CN
b) Chứng minh MO, NO theo thứ tự là tia phân giác của góc BMN và góc MNC.
Cho nửa đườn tròn tâm O đường kính BC. Các điểm M, N thuộc nửa đường tròn sao cho cung BM= cung MN= cung NC. Các điểm D, E thuộc đường kính BC sao cho BD=DE=EC. Gọi A là giao điểm của MD và NE. Chứng minh tam giác ABC là tam giác đều.
Giải giúp tớ với, cần câu trả lời gấp ạk, thanks
1 / Cho tam giác ABC, góc A=90 độ, AC=3AB. D, E thuộc AC sao cho AD=DE=EC.
a/ Gọi M là điểm đối xứng với B qua D. Chứng minh rằng ABCM là tứ giác nội tiếp
b/ Chứng minh rằng góc ACB+ góc AEB= 45 độ
2/ Cho đường tròn tâm O bán kính R=3cm và một điểm S cố định bên ngoài đường tròn sao cho SO=5cm. Vẽ tiếp tuyến SA với A là tiếp điểm và cát tuyến SCB không qua tâm sao cho O nằm trong góc ASB ( C nằm giữa S và B ). Gọi H là trung điểm của CB
a) Chứng minh rằng tứ giác SAOH nội tiếp một đường tròn
b) Tính chu vi và diện tích của đường tròn ngoại tiếp tứ giác SAOH
c) Tính tích SC.SB
3/ Cho tam giác ABC nội tiếp đường tròn tâm O đường kính AB=2R. Lấy H là trung điểm của dây BC. Tia OH cắt đường tròn tại D, AD lần lượt cắt tiếp tuyến Bx của đường tròn tại E và F
a) Chứng minh AD là tia phân giác của góc CAB
b) Chứng minh tứ giác ECDF là tứ giác nội tiếp
c) Cho CD= R=căn10cm. Tính diện tích của hình viên phân giới hạn bởi cung CDB với dây CB
4/ Cho tam giác ABC cân ở A nội tiếp đường tròn O đường kính I. Gọi E là trung điểm của AB. K là trung điểm của OI. Chứng minh rằng AEKC là tứ giác nội tiếp
5/Cho tam giác ABC. Các đường phân giác trong của B, C cắt nhau tại S, các đường phân giác ngoài của B và C cắt nhau tại E. Chứng minh rằng BSCE là 1 tứ giác nội tiếp.
cho tam giác đều ABC, gọi D trên cạnh AC, từ D kẻ DH vuông góc AB, từ C kẻ đường thẳng vuông góc BC cắt DH tại E. I là trung điểm AD. CMR. tam giác BEI là nửa tam giác đều
cho hình vuông ABCD cố định, độ dài cạnh là a. E là điểm di chuyển trên cạnh CD (E khác D ), đường thẳng AE cắt đường thẳng BC tại F, đường thẳng vuông góc với AE tại A cắt đường thẳng CD tạ K.
1) chứng minh hai tam giác ABF và ADK bằng nhau. Suy ra tam giác AFK vuông cân.
2) gọi I là trung điểm của FK. chứng minh I là đường tròn đi qua A,C,F,K và I di chuyển trên đường thẳng cố định khi E di động trên CD
3) tính góc AIF, suy ra bốn điểm A,B,I,F cùng nằm trên một đường tròn.
4) đặt DE=x (0<x=<a). Tính độ dài các cạnh của tam giác AEK theo a và x
5) hãy chỉ ra vị trí của E sao cho độ dài EK ngắn nhất và chứng minh điều đó