a, Chứng minh AH là đường trung bình của tam giác BCD
b, Sử dụng hệ thức giữa đường cao và các cạnh góc vuông trong tam giác vuông BCD và áp dụng câu a)
a, Chứng minh AH là đường trung bình của tam giác BCD
b, Sử dụng hệ thức giữa đường cao và các cạnh góc vuông trong tam giác vuông BCD và áp dụng câu a)
Cho tam giác ABC cân tại A có đường cao AH và BK.Qua B kẻ đường thẳng vuông góc với BC, cắt tia đối của tia AC tại D .Chứng minh rằng:
a,BD = 2AH
b,\(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{4AH^2}\)
Cho tam giác ABC cân tại A có Ah và BK là hai đường cao. Kẻ đường thẳng vuông góc BC tại B cắt Ca tại D. CM: BD=2AH
Cho tam giác ABC cân tại A có đường cao AH và BK.Qua B kẻ đường thẳng vuông góc với BC, cắt tia đối của tia AC tại D .Chứng minh rằng:
a,BD = 2AH
b,\(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{4AH^2}\)
Cho tam giác vuông ABC vuông tại A, với AC<AB, AH là đường cao kẻ từ đỉnh A. Các tiếp tuyến tại A và B với đường tròn (O) ngoại tiếp tam giác ABC cắt nhau tại M. Đoạn MO cắt cạnh AB ở E. Đoạn MC cắt đường cao AH tại F. Kéo dài CA cắt đường thẳng BM ở D. Đường thẳng BF cắt đường thẳng AM ở N.
(1. C/m OM//CD và M là trung điểm của BD)
2. C/m EF//BC
3, C/m HA là tia phân giác góc MHN
4, Trên tia BA lấy điểm K sao cho BK=3.BA. Kẻ đường thẳng Ky vuông góc với KC tại K cắt BD tại G. C/m tam giác AKG cân.
Cho tam giác ABC cân tại A, đường cao AH,BK. Đường thẳng qua B và vuông góc BC cắt tia CA tại D.CM:
A)BD=2AH
B)1/BK2 =1/BC2 + 1/4AH2
Cho tam giác ABC cân tại A, 2 đường cao AH và BK . Từ A kẻ đường thẳng vuông góc với AB, cắt BC tại D. BK cắt AD tại I.
a) Cho AB = 4 cm, AD = 7,5 cm. Tính AH
b) Cho AH =4 cm, BD = 10 cm. Tính BH
c) chứng minh BK.BI = BH.BD
d) Chứng minh : \(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{4AH^2}\)
cho tam giác ABC vuông tại A có đường cao AH. lấy M bất kỳ trên cạnh BC trên nửa mặt phẳng bờ BC có chứa A kẻ tia Bx, Cy vuông góc với BC đường thẳng vuông góc với AM tại A cắt By, Cy lần lượt tại I và K. Chứng minh:
a) \(AB^2\)=BH.BC
b) tam giác ACK đồng dạng tam giác ABM
c) tam giác ABC đồng dạng tam giác AMK
Vẽ hình nữa nhé!!!
cho tam giác ABC cân tại A có các đường cao AH và BK . Qua B kẻ đường thẳng vuông góc với BC cắt tia đối của tia AC tại D.CMR :
BD = 2AH ( vẽ hình giùm luôn nha )
Cho tam giác ABC nhọn. Kẻ các đường cao BE, CF giao nhau tại H.
a) Chứng minh: AE.AC=AF.AB và tam giác AEF đồng dạng tam giác ABC.
b) Qua B kẻ đường thẳng song song với CF cắt tia AH tại M. Ah cắt BC tại D. Chứng minh: BD^2=AD.DM.
c) Cho góc ACB = 45 độ và kẻ AK vuông góc EF tại K. Tính tỉ số giữa S AFH/ S AKE.
d) Chứng minh: AB.AC = BE.CF + AE. AF