Bài 1: Tứ giác ABCD, góc A =góc C=90 độ. Da cắt CB tại E, AB cắt CD tại F. Chứng minh rằng:
a) Góc E= góc F
b) Tia phân giác của góc E cắt AB tại G, cắt CD tại H. Tia phân giác của góc F cắt BC tại I,cắt AD tại K.
CMR: GKHI là hình thoi
Bài 2: Tam giác ABC đều. M thuộc BC, ME vuông góc với AB (E thuộc AB). ME vuông góc với AC (F thuộc AC). I thuộc AM: IA=IM. D thuộc BC: DB=DC. Chứng minh rằng:
a) Góc DIE, góc DIF=?
b) DEIF là hình thoi
Bài 3: Tam giác ABC, D thuộc AB, E thuộc AC: BD=CE. M thuộc DE: MD=ME. N thuộc BC: NB=NC. I thuộc BE: IB=IE. K thuộc CD: KC=KD. Chứng minh rằng:
a) MINK là hình?
b) IK cắt AB tại G, IK cắt AC tại H
CMR: Tam giác AGH cân
Bài 1: Tam giác ABC đều. M thuộc BC, ME vuông góc với AB (E thuộc AB). ME vuông góc với AC (F thuộc AC). I thuộc AM: IA=IM. D thuộc BC: DB=DC. Chứng minh rằng:
a) Góc DIE, góc DIF=?
b) DEIF là hình thoi
Bài 2: Tam giác ABC; D thuộc AB, E thuộc AC: BD=CE. M thuộc DE: MD=ME, N thuộc BC: NB=NC, I thuộc BE: IB=IE, K thuộc CD: KC=KD. Chứng minh rằng:
a) MINK là hình?
b) IK cắt AB tại G, IK cắt AC tại H.
CMR: Tam giác AGH cân
Cho ABC là một tam giác cân (AB = AC) và diện tích của nó là 501cm2. BD là đường phân giác bên trong của góc ABC (D ∈ AC), E là một điểm trên tia đối của CA sao cho CE = CB. I là một điểm trên BC sao cho CI = 1/2 BI. Đường EI cắt AB tại K, BD cắt KC tại H. Tìm diện tích tam giác AHC
Bài 1. Cho tam giác ABC cân tại A ( góc A< 90°). Kẻ BD vuông góc với AC tại D, kẻ CE vuông góc vói AB tại E.
a) Chứng minh tam giác ADE cân.
b) Chứng minh DE// BC.
c) Gọi I là giao điểm của BD và CE. Chứng minh IB = IC
d) Chứng minh. AI vuông góc BC.
Bài 2. Cho tam giác ABC cân tại A. Trên tia đối của tia BA lấy điểm D trên tia đối của tia CA lấy điểm E sao cho BD = CE, Gọi I là giao điểm của BE và CD.
a) Chứng minh IB = IC, ID = IE.
b) Chứng minh DE // BC.
c) Gọi M là trung điểm của BC. Chứng minh ba điểm A, M, I thẳng hàng
Cho tam giác ABC cân tại A . Điểm D thuộc AB , E thuộc tia đối của tia CA sao cho BD = CE . Gọi I là giao điểm của DE và BC . Chứng minh : ID= IE
Cho tam giác ABC (góc A=90). D thuộc BC sao cho BD=BA. Qua D kẻ đường thăng d vuông góc BC cắt tia đối của tia AB tại E. Chứng minh:
a)Tam giác BEC cân
b)ED cắt AC tại H. Chứng minh BH vuông góc EC
c)Tia Bx vuông góc BA, ED cắt Bx tại K
Chứng minh tam giác BHK cân.
Cho hình vuông ABCD. Gọi E, F là trung điểm của AB, BC. DF và CE cắt nhau tại I, BD cắt EF tại G.
a) Chứng minh tam giác GIB cân
b) Trên tia đối của tia CB, lấy H sao cho CH=CB. Chứng minh BD=HI
Cho tam giác ABC, D thuộc tia đói BC sao cho BA=BD, E thuộc tia đối CB sao cho CE=CA.BH vuông góc với AD, CK vuông góc với AE. HK cắt AB tại M, cắt AC tại N.C/m: a.HK//BC,b. HK= 1 nửa chu vi tam giác ABC
Cho tam giác ABC cân tại A, có AB=10cm, BC=12cm. Kẻ đường cao AH, từ H kẻ HD // AC. Trên tia đối của tia CA lấy điểm E sao cho CE = BD, DE cắt BD tại I.
a) Tính AH.
b) Chứng minh tam giác BDH là tam giác cân.
c) Chứng minh I là trung điểm của DE.