Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lưu Phương Anh

Cho tam giác ABC cân tại A, AB > BC, H là trung điểm của BC
a) Chứng minh: ΔABH = ΔACH. Từ đó suy ra AH vuông góc với BC
b) Tính độ dài AH nếu BC = 4cm; AB = 6cm
c) Tia phân giác của góc B cắt AH tại I. Chứng minh tam giác BIC cân
d) Đường thẳng đi qua a song song với BC cắt BI và CI tại M và N. Chứng minh A là trung điểm của MN

đề có sai không zợ 

nói tg ABC cân mà AB>AC

Khách vãng lai đã xóa

a)\(\text{ Xét }\Delta ABH\)\(\text{và }\Delta ACH\)\(\text{có}\)

\(AB=AC\)

\(\widehat{ABH}=\widehat{ACH}\left(\Delta\text{ABC cân}\right)\)

\(BH=CH\)

\(\Rightarrow\Delta ABH=\Delta ACH\left(c.g.c\right)\)

\(\Rightarrow\widehat{AHB}=\widehat{AHC}\)

\(\text{Mà }\widehat{AHB}+\widehat{AHC}=180^o\)

\(\Rightarrow\widehat{AHB}=\widehat{AHC}=90^o\)

\(\Rightarrow AH\perp BC\)

b) \(\text{Có }BH=\frac{BC}{2}\left(gt\right)\)
\(\text{Mà BC = 4 ( GT )}\)
\(\Rightarrow BH=4cm\)
\(\text{Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H ta được :}\)
\(\text{AH^2 + BH^2 = AB^2}\)
\(\Rightarrow AH^2+2^2=6^2\)
\(\text{=> AH^2 = 32}\Rightarrow AH^2=32\)\(\Rightarrow AH^2=32\)
\(\Rightarrow AH=\sqrt{32}\)
\(\text{Vậy }AH=\sqrt{32}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Lê Ngọc Dung
Xem chi tiết
Sakura
Xem chi tiết
Lê Thị Thùy Linh
Xem chi tiết
Iloovverroblox
Xem chi tiết
thor
Xem chi tiết
Tớ thích Cậu
Xem chi tiết
Phạm Anh Thư
Xem chi tiết
Cửu Vĩ Hồ
Xem chi tiết