cho tam giác abc cân ở A. Có đường cao AD. Từ D kẻ DE vuông góc AB, DE vuông góc AC. Trên tia đối của DE lấy điểm M sao cho DE=DM. Chứng minh
a,BE=CF
b, AD là đường trung trực của đoạn thẳng È
c, tam giác EFM là tam giác vuông
d, BE//CM
Cho tam giác ABC cân tại A. Có đường cao AD. Từ D kẻ DE vuông góc AB, DF vuông góc AC. Trên tia đối của tia DE lấy điểm M sao cho DE=DM. Cm
BE=CF
AD là trung trực của EF
tam giác EFM vuông
BE song song CM
Bài 4. Cho ∆ ABC cân tại A, đường cao AD. Từ D kẻ DE vuông AB, DF vuông AC. Trên tia đối của tia DE lấy điểm M sao cho DE = DM. Chứng minh:
a) BE = CF
b) AD là đường trung trực của đoạn thẳng EF
c) Tam giác EFM là tam giác vuông.
d) BE // CM
Cho tam giác Abc cân tại A. Đường cao AD. Từ D kẻ DE vuôg góc với AB, DF vuông góc với AC. Lấy M thuộc tia đối của tia DE sao cho DM = DE
Chứng minh
1, BE = CF
2, AD là đường trung trực của EF
3, Tam giác EFM vuông
4, BE // CM
Cho tam giác ABC cân tại A, đường cao AD, từ D kẻ DE vuông góc AB, DF vuông góc AC. Trên tia đối của tia DE lấy điểm M sao cho DE = DM. C/m
a) BE = CF
b) AD là đường trung trực của EF
c) tam giác EMF vuông
d) BE song song CM
Cho tam giác ABC cân tại A. Có đường cao AD. Từ D kẻ DeD kẻ DE vuông góc với AB DF vuông góc với AC.Trên tia đối của DE kẻ DM sao cho DE=DM Chứng Minh
:a. BE= CF
b. AD là trun g trực của EF
c.Tam giác EFM vuông
d. BE// CM
GIÚP MÌNH NHÉ MỌI NGƯỜI, BÀI NÀO BIẾT GIÚP MÌNH TRƯỚC CŨNG ĐƯỢC. CẢM ƠN RẤT NHIỀU!!! :"3
Bài 1: cho tam giác ABC có góc A tù. Ở miền ngoài tam giác vẽ tam giác vuông cân BAD, CAE, ( đỉnh A). Đường cao AH cắt DE tại M. Chứng minh MD=ME
Bài 2: cho tam giác ABC, góc BAC = 120độ, đường phân giác trong AD. Từ D hạ DE vuông góc AB, DF vuông góc AC.
a) Hãy cho nhận xét về tam giác DEF
b) qua C vẽ đường thẳng song song với AD, nó cắt đường thẳng AB tại M. Hãy cho nhận xét về tam giác ACM
c) Cho biết CM=a,CF=b. Tính AD (a>b)
Bài 3: cho tam giác ABC. Trên nửa mặt phẳng không chứa tia AC có bờ là đường thẳng AB, người ta vẽ AD vuông góc AB và AD=AB. Trên nửa mặt phẳng không chứa tia AB có bờ là đường thẳng AC, vẽ AE vuông góc góc AC và AE=AC. Gọi P,Q,M theo thứ tự là trung điểm của BD,CE và BC. Chứng minh rằng:
a) BE=CD và BE vuông góc CD
b) PQM là tam giác vuông cân
bài 4: trên cạnh bên AB của tam giác ABC cân, người ta lấy điểm D, trên tia đối tia CA lấy điểm E sao cho BD=CE . DE cắt BC ở F. Chứng minh F là trung điểm của DE
Cho tam giác ABC (AB = AC) Gọi D là trung điểm của BC từ D hạ DE, DF thứ tự vuông góc với AC,AB
a) Chứng minh tam giác ADE bằng tam giác ADF và AD là đường trung trực của đoạn thẳng EF
b) Trên tia đối của tia DE lấy điểm K sao cho DE = DB. Chứng minh tam giác DKC vuông
Cho tam giác ABC vuông tại A. Kẻ BD là tia phân giác của ABC ( D thuộc AC ) Trên cạnh BC lấy điểm E sao cho BE = BA.
a) Chứng minh: tam giác ABD = EBD
b) Chứng minh: DE = AD và DE vuông góc với BC.
c) Chứng minh: BD là đường trung trực của đoạn AE.
d) Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh ba điểm F, D, E thẳng hàng.