Cho A',B',C' lần lượt nằm trên cạnh BC,AC,AB của tam giác ABC. Biết rằng AA',BB',CC' đồng quy tại M. Chứng minh rằng: \(\frac{AM}{A'M}=\frac{AB'}{CB'}+\frac{AC'}{BC'}\)
Cho A', B', C' lần lượt thuộc cạnh BC, AC, AB của tam giác ABC. biết AA', BB', CC' đồng quy tại M. C hứng minh AM/A'M=A'B/CB'+AC'/BC'
Cho A', B', C' lần lượt nằm trên ba cạnh BC, AC, AB (hoặc trên các đường thẳng chứa các cạnh) của tam giác ABC sao cho AA', BB', CC' đồng quy tại O.
Chứng minh rằng : \(\frac{AC'}{BC'}.\frac{BA'}{CA'}.\frac{CB'}{AB'}=1\) (Định lí Xêva).
1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.
2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.
3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN
4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.
5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3
Cho A',B',C' lần lượt nằm trên cạnh BC,AC,AB của tam giác ABC .Biết rằng AA',BB',CC' đồng qui tại M.Chứng minh rằng:AM/A"M=AB'/CB'+AC'/BC'
Cho tam giác ABC, đường trung tuyến AM. Gọi 0 là trung điểm của AM. Qua O kẻ đường thẳng d cắt các cạnh AB, AC. Gọi AA', BB', CC' là các đường vuông góc kể từ A, B, C đến đường thẳng d.
Chứng minh rằng: AA' = (BB' + CC') / 2
Cho tam giác ABC và M là một điểm tùy ý trong tam giác này. Các đường thẳng AM, BM, CM lần lượt cắt các cạnh BC, AC, AB tại A', B', C'.
Chứng minh rằng tổng \(\frac{AM}{AA'}+\frac{BM}{BB'}+\frac{CM}{CC'}\) bằng hằng số.
cho tứ giác ABCD. Gọi M, N, P, Q, R, S lần lượt là trung điểm của AB, BC, CD, DA, AC, BD.
a, Chứng minh các đường thẳng MP, NQ, RS đồng quy tại I.
b, Chứng minh đường thẳng AI đi qua trọng tâm A' của tam giác BCD và IA=3IA'.
c, Gọi B', C', D' theo thứ tự là trọng tâm của các tam giác ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB' cắt nhau tại một điểm và điểm này chia các đoạn AA', BB', CC', DD' theo cùng một tỉ số.
Các bài trên chỉ được vẽ các đường thẳng song song tạo ra các cặp tam giác tương ứng tỉ lệ thôi nhé. Bạn nào làm được giúp mình nha. Tks mọi người :)