a) Ta có: \(\frac{\widehat{C}}{1}=\frac{\widehat{B}}{3}=\frac{\widehat{A}}{6}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{1+3+6}=\frac{180^o}{10}=18^o\)
=> \(\widehat{C}=18^o;\widehat{B}=18^o\times3=54^o;\widehat{A}=18^o\times6=108^o\)
Ta được hình vẽ sau:
b) Góc \(\widehat{ACE}=\frac{1}{2}\widehat{ACx}=\frac{1}{2}\left(180-18\right)=81^o\)
Góc \(\widehat{EAC}=180^o-\widehat{BAC}=180-108=72^o\)
Trong tam giác EAC ta có:
\(\widehat{AEC}=180-\left(\widehat{EAC}+\widehat{ACE}\right)=180-\left(81+72\right)=27^o\)