Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Câu 1. Cho tam giác ABC, O thuộc miền trong tam giác. Qua O kẻ HF//BC, DE//AB, MK//AC (M,K thuộc AB; E,M thuộc BC; D, F thuộc AC). Chứng minh: a, \(\frac{AK}{AB}+\frac{BE}{BC}+\frac{CF}{CA}=1\)
b, \(\frac{DE}{AB}+\frac{FH}{BC}+\frac{MK}{CA}=2\)
Câu 2. Cho tam giác ABC, AB=c, BC=a, AC=b, phân giác AD. Chứng minh: \(AD< \frac{2bc}{b+c}\)
Câu 3. Cho tam giác ABC có AB + AC = 2BC, I là giao điểm của 3 phân giác trong, G là trọng tâm của tam giác. Chứng minh IG // BC
Mọi người giúp mình với ạ mình đang cần gấp :(( À giải bằng kiến thức lớp 8 thôi nhé!!!
Cho tam giác ABC có BC= a,AC = b, AB=c và p là nửa chu vi thỏa mãn
\(\frac{1}{p}=\frac{1}{p-a}-\frac{1}{p-b}-\frac{1}{p-c}\)
hỏi tam giác ABC là tam giác gì
Cho tam giác ABC có BC = a, CA = b, AB = c. Độ dài các đường phân giác trong của tam giác kẻ từ đỉnh A,B,C lần lượt là \(l_a,l_b,l_c\). Chứng minh rằng : \(\frac{1}{l_a}+\frac{1}{l_b}+\frac{1}{l_c}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Cho tam giác ABC có AB = c; BC = a; CA = b và diện tích tam giác ABC = S. Lấy D,E,F lần lượt thuộc các cạnh AB;BC;CA thỏa \(\frac{AD}{AB}=\frac{BE}{BC}=\frac{CF}{CA}=\frac{1}{3}\)gọi M,N,P lần lượt là giao điểm của: AE,CD ; AE,BF ; BF,CD. Tính diện tích tam giác MNP theo a,b,c và S
2. Cho tam giác ABC đều, cạnh a. Trên tia đối của tia AB, CA, BC lần lượt lấy D, E, F sao cho AD = \(\frac{1}{2}\)AB , CE = \(\frac{1}{2}\)AC, BF = \(\frac{1}{2}\)BC.
a) Tính SABC
b) Chứng minh tam giác DEF đều
c) Tính tỉ số của \(\frac{S_{DEF}}{S_{ABC}}\)
Cho tam giác ABC có độ dài 3 cạnh a, b, c thỏa mãn \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{3\left(a-b\right)\left(b-c\right)\left(c-a\right)}{abc}=9\)
Chứng minh rằng tam giác ABC đều
Cho A', B', C' lần lượt nằm trên ba cạnh BC, AC, AB (hoặc nằm trên các đường thẳng chứa các cạnh của tam giác ABC) sao cho A', B', C' thẳng hàng. Chứng minh rằng :
\(\frac{AC'}{BC'}.\frac{BA'}{CA'}.\frac{CB'}{AB'}=1\) (Định lí Mênêlauýt).
Cho tam giác ABC vuộng tại A, có AB = 12cm, AC = 16cm. Kẻ đường cao AH (H thuộc BC)
a, Chứng minh: Tam giác HBA đồng dạng Tam giác ABC
b, C/minh: AH . BC = AB . AC
c, Tính độ dài các đoạn thẳng BC, AH.
d, Trong ABC kẻ phân giác AD ( D thuộc BC). Trong ADB kẻ phân giác DE (E thuộc AB); trong ADC kẻ phân giác DF (F thuộc AC). CMR: \(\frac{EA}{EB}.\frac{DB}{DC}.\frac{FC}{FA}=1\)
Cho tam giác ABC; O thuộc miền trong tam giác. Qua O kẻ HF//BC; DE//AB; MK//AC ( H, k thuộc AB; E, M thuộc BC; D, F thuộc AC ). Chứng minh:
a) \(\frac{AK}{AB}+\frac{BE}{BC}+\frac{CF}{CA}=1\)
b) \(\frac{DE}{AB}+\frac{FH}{BC}+\frac{MK}{CA}=2\)