1.Cho tam giác ABC có \(\widehat{B}>90^o\). Vẽ đường phân giác AD và đường cao AH của tam giác ABC. CMR:
a) \(_{2\widehat{HAD}=\widehat{HAB}+\widehat{HAC}}\)
b) \(\widehat{ABC}=90^o+\widehat{HAB}\) và \(\widehat{ACB}=90^o-\widehat{HAC}\)
c)\(\widehat{DAH}=\frac{1}{2}\left(\widehat{ABC}-\widehat{ACB}\right)\)
Cho tam giác ABC, đỉnh B là góc tù.Có AD là tia phân giác và có AH là đường cao. CMR
a)2.HAD=HAB+CAD
b)ABC=90*+HAB
Cho tam giác ABC có đỉnh B tù và có đường phân giác AD và đường cao AH.CMR
1, 2 HAD= HAB+HAC
Có hình luôn dk ko ạ
Cho tam giác ABC có ∠B , ∠C là các góc nhọn, AC > AB. Kẻ đường cao AH. Chứng minh rằng ∠(HAB) < ∠(HAC) .
Cho tam giác ABC , góc A = 90 độ . Kẻ AH vuông góc với BC tại H
a) Tính góc B + C ?
b) Chứng minh : góc ABH = góc HAC , góc HAB = góc HCA
Cho tam giác ABC ( góc A=90 độ ) . Vẽ AH vuông góc với BC tại H . Tia phân giác của góc HAB cắt BC ở D, tia phân giác của HAC cắt BC tại E.
Chứng minh rằng các đường phân giác cũa tam giác ABC là giao điểm các đừơng trung trực của tam giác ADE
Cho tam giác ABC có A = 90°. Kẻ AH vuông góc với BC cắt BC tại H. Tia phân giác của góc A cắt BC tại D. Cho góc B = 40° a) Tính số đo góc C? b) Tính số đo góc HDA và HAD. c) So sánh góc HAB và góc HAC. (Nếu đc thì vẽ hình giúp mình nữa nha^^) Thanks~~~~~~
cho tam giác ABC có góc A= 90 độ . Kẻ AH vuông góc với BC(H thuộc BC). Tia phân gics góc HAC cắt BC ở D và tia phân giác góc HAB cắt BC tại E. Chứng minh AB+AC=BC+DE
cho tam giác ABC có góc A= 90 độ . Kẻ AH vuông góc với BC(H thuộc BC). Tia phân gics góc HAC cắt BC ở D và tia phân giác góc HAB cắt BC tại E. Chứng minh AB+AC=BC+DE