Cho tam gác ABC. Từ đỉnh A kẻ các đoạn AE và AF theo thứ tự vuông góc với các tia phân giác trong và ngoài của góc B. Cũng từ đỉnh A kẻ các đường thẳng AH và AK theo thứ tự vuông góc với các ta phân giác trong và ngoài của góc C
a. Chứng minh AEBF và AHCK là hình chữ nhật
b. Gọi M , N lần lượt là giao điểm của FK vớ AB, AC. Chứng minh bốn điểm F , H , K , E thẳng hàng
c. Chứng minh FK = 1 / 2 PABC (PABC là chu vi tam giác ABC )
d. Tam giác ABC cần thêm điều kiện gì để AEBF là hình vuông
MỌI NGƯỜI GIÚP MK GẤP Ạ
1) Cho tam giác ABC phân giác AD. Qua D dựng đường thẳng song song với AB đường thẳng này cắt AC tại E. Qua E dựng đường thẳng song song với BC đường thẳng này cắt AB tại F. a) chứng minh AE=AF, b) Xác định hình dạng của tam giác ABC trong trường hợp E là trung điểm AC.
2) Cho hình bình hành ABCD. Từ B kẻ BH vuông góc với AC. Gọi M,N,P,Q lần lượt là trung điểm của AH,AB,NB,BC. a) MP=1/2 NC. b) chứng minh BM vuông góc với NQ.
3) cho tam giác ABC, các đường thẳng AP,AQ theo thứ tự vuông góc với phân giác trong và phân giác ngoài góc B. Các đoạn thẳng AR, AS vuông góc phân giác trong và phân giác ngoài góc C. a) chứng minh APBQ, ÁC là hình chữ nhật, b) Q,R,P,S thẳng hàng, c) QS=1/2 (AB+BC+AC)
Cho ABC có BD là tia phân giác góc ngoài của góc B trong tam giác và CE là tia phân giác góc ngoài của góc C trong tam giác. AH vuông góc với BD( H thuộc BD). AK vuông góc với CE tại K ( K thuộc CE)
CM: HK // BC
Mọi người giúp mình với, mình đang cần gấp
1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D;
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE.
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng
5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF
Bài 6: Cho tam giác ABC vuông tại A (AB<AC), đường cao AH. Từ H kẻ HE và HF lần lượt
vuông góc với AB và AC (EAB, FAC).
a. Chứng minh AH=EF.
b. Trên tia FC xác định điểm G sao cho FG=AF. Chứng minh tứ giác EFGH là hình
bình hành.
c. Gọi O là giao điểm của AH và EF, I là giao điểm của EG và FH, kẻ trung tuyến FK
của tam giác HFC. Chứng minh ba điểm O; I; K thẳng hàng.
Cho tam giác ABC (AB 6= AC). Gọi E và F theo thứ tự là các hình chiếu
của B và C trên tia phân giác của góc A. Gọi K là giao điểm của các đường thẳng
FB và CE. Chứng minh rằng AK là tia phân giác của góc ngoài tại đỉnh A của tam
giác ABC.
Hình vuông ABCD, AB=BC=CD=DA=10cm. E thuộc CD, tia phân giác AF của góc DAE (F thuộc CD). FH vuông góc với AE (H thuộc AE), FH cắt BC tại K. Chứng minh rằng:
a) AH=?
b) AK là tia phân giác của góc BAE
c) Chu vi của tam giác CFK=?
Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E.
a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC
b ) Chứng minh , BF.FC = DF.EF
c ) Tính BC biết DE = 5cm , EF = 4cm
. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC
.Bài 26 : Cho tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC
a ) Chứng minh : AH = EF
b ) Chứng minh : AB^2 = BH.BC
c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác ABC
d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB .
Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K.
a ) Tính BC , AD
b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB ,
c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .
Cho tam giác ABC vuông ở A. Trên tia đối của tia AB, lấy điểm E sao cho AB= 2AE. Trên tia đối của tia AC lấy điểm F sao cho AC= 2AF. a) Chứng minh FE//BC. b) Kẻ AH vuông góc với BC tại H. Chứng minh AC2 = CH.CB c) Vẽ tia phân giác CD của góc ACB ( D thuộc AB), CD cắt AH ở I. Chứng minh IH AD IA DB . d) Cho AF= 1,5cm; AE= 2cm. Tính độ dài AH và diện tích tam giác HI