cho tam giác ABC có AB=9cm,AC=18cm.Trên cạnh AB,AC lần lượt lấy các điểm M,N sao cho AM=2 cm ,AN=4cm.trên các cạnh AB,AC lần lượt lấy D,E sao cho BD=CE. Gọi F,G lần lượt là trung điểm BC và DE. Đường thẳng GF cắt AB,AC lần lượt tại P và Q . Chứng minh tam giác APQ cân
cho tam giác ABC, điểm M là trug điểm của BC. Trên 2 cạnh AB và AC lần lượt lấy 2 điểm AB và AC lần lượt tại điểm D, E sao cho BD=CE. Gọi N là trug điểm của DE. Đườg trug bìh MN cắt AB và AC lần lượt tại P và Q.
CMR: tam giác ABC cân
Cho tam giác ABC cân tại A. Trên cạnh AB và AC lấy 2 điểm D và E Sao cho BD = CE (DE AB; EE AC) Goi M là trung điểm DE tren tia BM
lấy điểm F sao cho M là điểm của BE
Chứng minh BD = EF
chứng Minh FCF - EFC
Gọi K là trung điểm của CF. Chứng Minh 3 điểm D, F, K thẳng hàng
cho tam giác ABC, điểm M là trug điểm của BC. Trên 2 cạnh AB và AC lần lượt lấy 2 điểm AB và AC lần lượt tại điểm D, E sao cho BD=CE. Gọi N là trug điểm của DE. Đườg trug bìh MN cắt AB và AC lần lượt tại P và Q.
CMR: tam giác ABC cân
Cho tam giác ABC lấy hai điểm D và E lần lượt trên hai cạnh AB và AC sao cho BD=CE. Gọi M,N lần lượt là trung điểm của BC và DE. MN kéo dài cắt AB ở Q và cắt AC ở P. C/m a) tam giác APQ cân
b) tìm đk của tam giác ABC để tam giác APQ đều
cho tam giác abc có trung tuyến AM trên AB lấy E, trên AC lấy F sao cho AE/EB = AF/FC gọi N là giao điểm AM và EF
a) C/m N là trung điểm EF
b) NB kéo dài cắt AC tại Q, NC kéo dài cắt AB tại P. C/m PQ song song BC
c) trên tia đối của EF lấy H sao cho F là trung điểm EH trên tia đối của CB lấy điểm K sao cho C là trung điểm BK. C/m A,H,K thẳng hàng.
d) c/m EK,BH,AC đồng quy
1) Cho tam giác ABC, điểm I thuộc đường trung tuyến AM. Gọi E là giao điểm của BI và AC, F là giao điểm của CI và AB. G là trung điểm BF, H là trung điểm CE. CMR: EF//BC
2) Cho hình thang ABCD (AB//CD) có AB=12, CD=15. Gọi M là trung điểm AB, E là giao điểm CM và AD, F là giao điểm của DM và BC. Tính độ dài EF
3) Cho hình bình hành ABCD, E thuộc AD, F thuộc AB, I thuộc AC. Gọi M là giao điểm FI và CD, K là giao điểm EI và BC. CMR: MK//EF
4) Cho tam giác ABC, AB=10, AC=15, 1 đường thẳng đi qua điểm M thuộc cạnh AB và song song với BC cắt AC ở N sao cho AN=BM. Tính độ dài AM sao cho AM=BN
5) Cho tam giác ABC có AB<AC, đường phân giác AD, lấy I thuộc BC sao cho BI=2 IC. Qua I kẻ đường thẳng song song với AD cắt AC và AB theo thứ tự ở E và K. CM BK= 2 CE
#Toán_8 CÁC anh chị (các bạn ) giải giúp em mấy bài này với!
Bài 1: Tam giác ABC vuông cân tại C. Trên cạnh AC, BC lấy lần lượt các điểm P,Q sao cho AP=CQ. Từ P vẽ PM song song với BC. (M thuộc AB).
a) Chứng minh PCMQ là hình chữ nhật
b) Gọi I là trung điểm MQ. CHứng minh rằng khi P di chuyển trên cạnh AC; Q di chuyển trên cạnh BC thì I di chuyển trên một đoạn thẳng cố định.
Bài 2: CHo tam giác ABC. Gọi O là một điểm thuộc miền trong tam giác. M ,N,P,Q lần lượt là trung điểm các đoạn OB , OC, AC và AB.
a) CM MNPQ là hình bình hành
b) Xác định vị trí của O để MNPQ là hình chữ nhật.
Bài 3: Cho tam giác ABC (AB<AC) . Trên AB lấy điểm D. Trên AC lấy điểm E sao cho BD=CE. Gọi I ; K lần lượt là trung điểm của BC và DE. Kéo dài IK cắt AB; AC lần lượt tại M và N. CMR: tam giác AMN cân.
Cho hình bình hành ABCD AB lớn hơn Ad trên cạnh AB lấy điểm M tùy ý sao cho AM lớn hơn MB và m không trùng với điểm A ,B đường thẳng mc kéo dài cắt ad tại N đường thẳng Nb cắt dC tại p Chứng minh tam giác ndc đồng dạng với tam giác cbm và chứng minh pc.pn=pb.pd và nối bd cắt nc tại e chứng minh ce^2= em.en
Trên cạnh AB và AC của tam giác ABC, người ta lấy theo thứ tự các điểm D và E với BD=CE. Gọi M, N lần lượt là trung điểm BC và DE. Đường thẳng MN cắt AB với AC ở P và Q. Chứng minh rằng tam giác APQ cân