Qua điểm A ngoài đường tròn (O), vẽ đường thẳng xy vuông góc với OA. Lấy điểm B thuộc (O) sao cho góc AOB là góc tù. Tiếp tuyến tại B của (O) cắt đường thẳng xy tại C. Đường thẳng qua B và vuông góc với OC tại H cắt OA, xy và (O) lần lượt tại D,E và F( F khác B)
a/ Chứng ming tứ giác ACOB nội tiếp
b/ Chứng minh CB^2=CE.CA
c/ Chứng minh 1/BE+1/BD=1/BH
d/ Đường trung tuyến CM của tam giác CBO cắt đoạn BH tại I, tia OI cắt BC tại N. Gọi K là trung điểm OI.Cm: ba điểm N,H,K thẳng hàng
Cho tam giác ABC nội tiếp trong 1 đường tròn. M là điểm bất kì trên cung AC( không chứa điểm B). Kẻ MH vuông góc AC
; Mk vuông góc BC. Gọi P,Q tương ứng là trung điểm của AB và KH. Chứng minh rằng tam giác PQM là tam giác vuông
Cho hình vuông ABCD tâm O, cạnh hình vuông bằng 10cm. Gọi I là 1 điểm bất kì nằm trên nửa đường tròn đi qua 3 điểm A,O,D không chứa điểm O. IO cắt cạnh BC tại J. Cạnh DK của hình bình hành IJKD cắt BC tại E, EH là đường cao của tam giác EKJ.
a)Tính số đo của góc HEK
b) Chứng minh rằng IJ>10 căn 2 cm
cho tam giác ABC vuông tại B.Gọi (O;R) và (i;r) lần lượt là đường tròn ngoại tiếp,nội tiếp của tam giác ABC.
a) chứng minh : AB+BC=2(R+r)
b) gọi H là chân đường cao kẻ từ B của tam giác ABC. Dựng HP vuông góc với BC tại P và HN vuông góc với AB tại N.Chứng minh rằng đường thẳng NP vuông góc với đường thẳng BO
c) tiếp tuyến tại B cắt các tiếp tuyến tại A và tại C của đường tròn (O;R) theo thứ tự tại D và E.gọi K là giao điểm của CD và AE.chứng minh rằng ba điểm B;K;H thẳng hàng.
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn tâm O, đường kính R. 3 đường cao AB,BM,CN của tam giác ABC cắt nhau tại H
a/ Chứng minh tứ giác CDHM và ABDM nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác CDHM
b/ Chứng minh: AN.AB= AH.AD
c/ Gọi K là giao điểm của hai đường tròn tâm I và đường tròn tâm O. Chứng minh: OHKI là hình thang
d/ Gọi S là trung điểm của BH. Chứng minh: nếu MK vuông góc với BC thì 3 điểm K,D,S thẳng hàng
Cho tứ giác ABCD nội tiếp (O) (AB < CD, O nằm trong tứ giác). AC cắt BD tại E. Qua E vẽ đường thẳng vuông góc OE cắt AD, BC tại M, N. Gọi L là trung điểm AD.
a) CM: tứ giác EOLM là tứ giác nội tiếp.
b) CM: EA.EC = EB.ED.
c) CM: E là trung điểm MN.
d) Đường thẳng vuông góc AD tại D cắt đường thẳng vuông góc với BC tại C ở F. CM: O,E,F thẳng hàng.
GIÚP MÌNH VỚI: Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn tâm O, đường kính R. 3 đường cao AB,BM,CN của tam giác ABC cắt nhau tại H
a/ Chứng minh tứ giác CDHM và ABDM nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác CDHM
b/ Chứng minh: AN.AB= AH.AD
c/ Gọi K là giao điểm của hai đường tròn tâm I và đường tròn tâm O. Chứng minh: OHKI là hình thang
d/ Gọi S là trung điểm của BH. Chứng minh: nếu MK vuông góc với BC thì 3 điểm K,D,S thẳng hàng
Giải giúp tớ với, cần câu trả lời gấp ạk, thanks
1 / Cho tam giác ABC, góc A=90 độ, AC=3AB. D, E thuộc AC sao cho AD=DE=EC.
a/ Gọi M là điểm đối xứng với B qua D. Chứng minh rằng ABCM là tứ giác nội tiếp
b/ Chứng minh rằng góc ACB+ góc AEB= 45 độ
2/ Cho đường tròn tâm O bán kính R=3cm và một điểm S cố định bên ngoài đường tròn sao cho SO=5cm. Vẽ tiếp tuyến SA với A là tiếp điểm và cát tuyến SCB không qua tâm sao cho O nằm trong góc ASB ( C nằm giữa S và B ). Gọi H là trung điểm của CB
a) Chứng minh rằng tứ giác SAOH nội tiếp một đường tròn
b) Tính chu vi và diện tích của đường tròn ngoại tiếp tứ giác SAOH
c) Tính tích SC.SB
3/ Cho tam giác ABC nội tiếp đường tròn tâm O đường kính AB=2R. Lấy H là trung điểm của dây BC. Tia OH cắt đường tròn tại D, AD lần lượt cắt tiếp tuyến Bx của đường tròn tại E và F
a) Chứng minh AD là tia phân giác của góc CAB
b) Chứng minh tứ giác ECDF là tứ giác nội tiếp
c) Cho CD= R=căn10cm. Tính diện tích của hình viên phân giới hạn bởi cung CDB với dây CB
4/ Cho tam giác ABC cân ở A nội tiếp đường tròn O đường kính I. Gọi E là trung điểm của AB. K là trung điểm của OI. Chứng minh rằng AEKC là tứ giác nội tiếp
5/Cho tam giác ABC. Các đường phân giác trong của B, C cắt nhau tại S, các đường phân giác ngoài của B và C cắt nhau tại E. Chứng minh rằng BSCE là 1 tứ giác nội tiếp.
cho tam giác nhọn ABC nội tiếp đường tròn (O;R) các tiếp tuyến tại B và C với đường tròn (O;R) cất nhau tại E, AE cắt (O;R) tại D (khác A)
a, chứng minh tứ giác OBEC nội tiếp .
b, từ E kẽ đường thẳng d song song với tiếp tuyến tại A của (O;R) d cắt đường thẳng AB,AC lần lượt tại P,Q . Chứng minh AB.AP=AD.AE .
c, gọi M là trung điểm BC chứng minh EP=EQ và gócPAE = góc MAC .
d, chứng minh AM.MD=
Cho tam giác ABC nội tiếp trong nửa đường tròn tâm O đường kính AB=2R . Lấy H là trung điểm của dây BC . Tia OH cắt đường tròn tại D . Tia AC , AD lần lượt cắt tiếp tuyến Bx của nửa đường tròn tại E và F
a, Chứng minh AD là tia phân giác của góc CAB
b, Chứng minh tứ giác ECDF là tứ giác nội tiếp