Cho tam giác $A B C$ nhọn nội tiếp đường tròn $(O, R)$. Các đường cao $A D, B E, C F$ cắt nhau tại $H$. Kẻ đường kính $A G$. Gọi $I$ là trung điểm $B C$.
a) Chứng minh 4 điểm $B, C, E, F$ cùng nằm trên 1 đường tròn.
b) Chứng minh $D H . D A=D B . D C$ và tứ giác $B H C G$ là hình bình hành.
c) Cho $B C$ cố định, điểm $A$ chuyển động trên cung lớn $B C$ sao cho tam giác $A B C$ nhọn. Tìm vi trí của $A$ để diện tích $\Delta A E H$ lớn nhất.
Vì BE vuông góc với AC tại E (E ϵAC) ⇒ góc BEC =\(90^0\)
Vì CF vuông góc với AB tại F (F ϵ AB) ⇒ góc BFC =\(90^0\)
xét tứ giác BCEF có ;
góc BEC+BFC=\(90^0+90^0=180^0\)
mà hai góc ở vị trí kề nhau
⇒tứ giác BCEF là tgnt hay A,C,E,F cùng nằm trên một đtròn
b,