Tính giá trị của biểu thức N=x^2019 +3x^2020-2x^2021 với x=\(\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3+2\sqrt{ }2}\)
\(\sqrt{5-3x}+\sqrt{x+1}=\sqrt{3x^2-4x+4}\)
\(\Leftrightarrow5-3x+x+1+2\sqrt{\left(5-3x\right)\left(x+1\right)}=3x^2-4x+4\)
\(\Leftrightarrow2\sqrt{-3x^2+2x+5}=3x^2-2x-2\)
\(\Leftrightarrow2\sqrt{-\left(3x^2-2x-5\right)}=3x^2-2x-5+3\)
Đặt \(3x^2-2x-5=t\left(t\le0\right)\)
\(\Rightarrow t=-1\)
\(\Leftrightarrow3x^2-2x-5=-1\)
\(\Leftrightarrow3x^2-2x-4=0\)
\(\Leftrightarrow x=\frac{1+\sqrt{13}}{3}\)
Kiểm duyệt giùm
1.\(\sqrt[4]{x-\sqrt{x^2-1}}+\sqrt{x+\sqrt{x^2-1}}=2\)
2. \(\left(4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\)
3. \(5\sqrt{x}+\frac{5}{2\sqrt{x}}=2x+\frac{1}{2x}+2\)
4.\(3x^2-x+48=\left(3x-10\right)\sqrt{x^2+15}\)
5.\(x.\frac{3x}{\sqrt{2x-3}}-\sqrt{2x-3}=2\)
\(\sqrt{2X^2+3X-2}-3\sqrt{X+6}=4-\sqrt{2X^2+11X-6}+3\sqrt{X+2}\)
\(\sqrt{3X^2-7X+3}-\sqrt{X^2-2}=\sqrt{3X^2-5X-1}-\sqrt{X^2-3X+4}\)
\(8x^2+\sqrt{3x^2+6x+5}=74-\sqrt{36x-5}\)
\(4\sqrt{x+3}+\sqrt{19-3x}=x^2+2x+9\)
\(x\sqrt{3-2x}=3x^26x+4\)
\(\sqrt{10x+1}+\sqrt{3x+5}=\sqrt{9x+4}+\sqrt{2x-2}\)
\(\sqrt{2x^2+x-1}+\sqrt{3x^2+x-1}=\sqrt{x^2+4x-3}-\sqrt{x^2-3x+4}\)
\(\frac{x^2}{\left(1+\sqrt{x+1}\right)^2}>x-4\)
\(\left(5\right)\sqrt{x+3-4\sqrt{x-1}}\sqrt{x+8+6\sqrt{x-1}}=5\)
\(\left(6\right)2x^2+3x+\sqrt{2x^2+3x+9}=33\)
\(\left(7\right)\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+30}=8\)
\(\left(8\right)x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
giải các phương trình sau:
\(1,\sqrt{18x}-6\sqrt{\dfrac{2x}{9}}=3-\sqrt{\dfrac{x}{2}}\)
\(2,\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\sqrt{27x}=-4\)
3, \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)
\(4,\sqrt{16x+16}-\sqrt{9x+9}=1\)
\(5,\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)
\(6,\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=\dfrac{-2}{3}\)
giải phương trình:
\(a,\sqrt{2x-3}+\sqrt{5-2x}=3x^2-12x+14\)
\(b,x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\)
\(c,3x^2+21x+18+2\sqrt{x^2+7x+7}=2\)
\(d,\frac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)
\(c,\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)