không vì A=n^2+n+1 nên A luôn là 1 số lẻ
suy ra A không chia hết cho 2 nên A không chia hết cho bội của 2 là 2010
Không Vì A luôn là số lẻ => không chia hết cho 2=> không chia hết cho 2010
không vì A=n^2+n+1 nên A luôn là 1 số lẻ
suy ra A không chia hết cho 2 nên A không chia hết cho bội của 2 là 2010
Không Vì A luôn là số lẻ => không chia hết cho 2=> không chia hết cho 2010
1, n.(n+1) . (n+2) . (n+3) chia hết cho 3 và 8
2,
a) Có tồn tại số tự nhiên n để n2 + n + 2 chia hết cho 5 hay không?
b) Tìm số tự nhiên n nhỏ nhất sao cho n vừa là tổng của 5 số tự nhiên liên tiếp, vừa là tổng của 7 số tự nhiên liên tiếp
3,
Tìm số nguyên x, biết:
a) 2x - 1 là bội số của x - 3
b) 2x + 1 là ước của 3x + 2
c) (x - 4).(x + 2) + 6 không là bội của 9
d) 9 không là ước của (x - 2).(x + 5) + 11
4,
Tìm số nguyên a, b, sao cho:
a) (2a - 1).(b2 + 1) = -17
b) (3 - a).(5 - b) = 2
c) ab = 18, a + b = 11
5,
Tìm số nguyên x, sao cho:
a) A = x2 + 2021 đạt giá trị nhỏ nhất
b) B = 2022 - 20x20 - 22x22 đạt giá trị lớn nhất.
cho A = n2 + n + 1 .Có tồn tại hay ko một số tự nhiên n để A chia hết cho 2010
Có tồn tại số tự nhiên n nào để n^2+n+2 chia hết cho 5 hay không
1) Cho số A=n^2 + n + 1. Có tồn tại hay không số tự nhiên n để số A chia hết cho 2010.
2) Tìm số chính phương có 4 chữ số, biết rằng nếu lấy chữ số hàng nghìn trừ đi 3, chữ số hàng đơn vị cộng thêm 3 thì được số mới cũng là số chính phương.
có tồn tại số tự nhiên n để n^2 +n+2 chia hết cho 10 hay không
Có tồn tại số tự nhiên n nào để n2+n+2 chia hết cho 5 hay không?
có tồn tại hay không số tự nhiên n sao cho n^2 n 2 chia hết cho 49 hay không ?
Co tồn tại số tự nhiên n nào để n^2+n+2 chia hết cho 5 hay không
Co tồn tại số tự nhiên n nào để n^2+n+2 chia hết cho 5 hay không