Cho x, y, z là các số thực dương thoả mãn xyz=1. Tìm GTNN của P = \(\frac{x^3+1}{\sqrt{x^4+y+z}}+\frac{y^3+1}{\sqrt{y^4+z+x}}+\frac{z^3+1}{\sqrt{z^4+x+y}}-\frac{8\left(xy+yz+zx\right)}{xy+yz+zx+1}\)
Cho các sô thực dương x,y,z thỏa mãn xy+yz+zx=3 .CMR:\(\frac{1}{xyz}+\frac{4}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge\frac{3}{2}\)
Cho x,y,z là ba số dương thỏa mãn xy+yz+zx=3.C/m:
\(\frac{1}{1+x^2\left(y+z\right)}+\frac{1}{1+y^2\left(x+z\right)}+\frac{1}{1+z^2\left(x+y\right)}\le\frac{1}{xyz}\)
Cho x,y,z là ba số dương thỏa mãn x+y+z=1. Tìm giá trị nhỏ nhất của biểu thức
\(M=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)
Cho các số thực dương x,y,z thỏa mãn \(\frac{yz}{x}+\frac{zx}{y}+\frac{xy}{z}=1\). Tìm GTLN của biểu thức
\(A=\frac{1}{1-x}+\frac{1}{1-y}+\frac{1}{1-z}\)
cho các số thực dương x,y,z thỏa mãn x2 + y2 + z2 + (x+y+z)2 \(\le\)4.
chứng minh: \(\frac{xy+1}{\left(x+y\right)^2}+\frac{yz+1}{\left(y+z\right)^2}+\frac{zx+1}{\left(x+z\right)^2}\ge3\)
1.Giải hệ phương trình: \(\hept{\begin{cases}\left(x+\sqrt{x^2+1}\right)\left(\sqrt{y^2+1}-y\right)=1\\3\sqrt{x+2y-2}+x\sqrt{x-2y+6}=10\end{cases}.}\)
2.cho các số thực không âm x,y,z thỏa mãn: \(x^3+y^3+z^3=3\)
Tìm Min \(P=\frac{xyz+\left(x+y+z\right)^2}{xy+yz+xz}-\frac{1}{xy+yz+xz+1}\)
cho x,y,z là các số thực dương thỏa mãn\(xy+yz+zx=1\). Chứng minh rằng \(\text{x/căn(1+x^2)+y/căn(1+y^2)+z/căn(1+z^2)+1/x^2+1/y^2+1/z^2>=21/2}\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge\frac{21}{2}\)
\(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge\frac{21}{2}\)
Cho 3 số thực dương \(x,y,z\) thỏa mãn \(x+y+z=3\). Tìm GTLN của biểu thức \(P=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)