Cho a,b,c là số thực dương. Biết a+b+c=1
Tìm GTNN của bt :
a) \(A=\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\)
b) \(B=\sqrt{2a^2-3ab+2b^2}+\sqrt{2b^2-3bc+2c^2}+\sqrt{2c^2-3ca+2a^2}\)
Tìm GTNN của bt biết : a+b+c=1
a) \(A=\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+c^2}\)
b) \(B=\sqrt{2a^2-3ab+2b^2}+\sqrt{2b^2-3bc+2c^2}+\sqrt{2c^2-3ca+2b^2}\)
Nhanh giúp tui nha =)
Cho 3 số dương a,b,c thỏa mãn abc=1
tìm GTNN của biểu thức \(p=\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)
cho các số dương a,b,c thỏa mãn
abc=ab+bc+ca
cmr: \(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+2c+b}< \frac{3}{16}\)
cho các số thực a bc thỏa mãn(a+b+c)(ab+bc+ca)=2018 và abc=2018. tính P=(b^2c+2018)(c^2a+2018)(a^2b +2018)
cho a,b,c là các số thực thỏa mãn:\(a^2+b^2+c^2=1\)
CMR:\(\sqrt{a^2+b^2c^2}+\sqrt{b^2+c^2a^2}+\sqrt{c^2+a^2b^2}\ge ab+bc+ca+1\)
Cho biểu thức P =\(\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2a+2c-b\right)^2\)
1) Chứng minh P =\(9\left(a^2+b^2+c^2\right)\)
2)Nếu a,b,c là các số thực thỏa mãn ab + bc + ca = -1, tìm giá trị nhỏ nhất của biểu thức P
cho n là số nguyên dương cmr:
\(\frac{1}{n+1}+\frac{1}{n+2}+.....+\frac{1}{3n+1}>1\)
cho các số dương a,b,c thỏa mãn:
abc=ab+bc+ca
cmr: \(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+2c+b}< \frac{3}{16}\)
cho a,b,c là các số dương thỏa mãn abc=1 tìm min của
P= \(\frac{ab}{2b+c}+\frac{bc}{2c+a}+\)\(\frac{ca}{2a+b}\)