Cho số phức z thỏa mãn | z + 1 - i | = | z | . Giá trị nhỏ nhất của môđun của z là
A. 0
B. 1 2
C. 1
D. 1 2
Cho z = x + y i với x, y ∈ R là số phức thỏa mãn điều kiện z ¯ + 2 - 3 i ≤ | z + i - 2 | ≤ 5 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = x 2 + y 2 + 8 x + 6 x . Tính M+m.
Cho các số phức z, w thỏa mãn z + 2 - 2 i = z - 4 i , w = i z + 1 .
Giá trị nhỏ nhất của w là
A. 2 2
B. 2
C. 3 2 2
D. 2 2
Môđun của số phức z thỏa mãn điều kiện z + ( 2 - i ) z = 13 - 3 i là
A. 3
B. 5
C. 17
D. 17
Tìm số phức z thỏa mãn | z - 1 - i | = 5 và biểu thức T = | z - 7 - 9 i | + 2 | z - 8 i | đạt giá trị nhỏ nhất
Gọi T là tập hợp các số phức z thỏa mãn z - i ≥ 3 và z - 1 ≤ 5 . Gọi z 1 , z 2 ∈ T lần lượt là các số phức có môdun nhỏ nhất và lớn nhất. Tìm số phức z 1 + 2 z 2
A. 12+2i
B. -2+12i
C. 6-4i
D. 12+4i
Cho hai số phức z1 z2 thỏa mãn đồng thời hai điều kiện sau |z-1|=\(\sqrt{34}\) , |z+1+mi| = |z+m+2i| (trong đó m là số thực) và sao cho |z1 z2| lớn nhất.Khi đó giá trị |z1 + z2| bằng:
A:\(\sqrt{2}\)
B:10
C:2
D:\(\sqrt{130}\)
Cho số phức z thỏa mãn (3 + 2i)z + (2 - i)2 = 4 + i. Môđun của số phức w = ( z + 1 ) z là
A. 2
B. 4
C. 10
D. 10
Cho số phức z thỏa mãn ( 2 + i ) z + 2 ( 1 + 2 i ) 1 + i . Môđun của số phức w = z + i + 1 là
A. 3
B. 4
C. 5
D. 6