Cho số phức z = 2 + 3i. Gọi M là điểm biểu diễn số phức z, N là điểm biểu diễn số phức z ¯ và P là điểm biểu diễn số phức (1+i)z. Khẳng định nào sau đây là khẳng định sai?
A. M(2;3)
B. M(2;-3)
C. P(1;5)
D. |z| = 13
Cho số phức z = 2 + 3i. Gọi M là điểm biểu diễn số phức z, N là điểm biểu diễn số phức z, N và P là điểm biểu diễn số phức (1+i)z. Khẳng định nào sau đây là khẳng định sai?
A. M(2;3)
B. N(2;-3)
C. P(1;5)
D. |z| = 13
Cho số phức z thỏa mãn z + 3 i + z - 3 i = 10 . Gọi M 1 ; M 2 lần lượt là điểm biểu diễn số phức z có môđun lớn nhất và nhỏ nhất. Gọi M là trung điểm của M 1 M 2 , M(a, b) biểu diễn số phức w, tổng a + b nhận giá trị nào sau đây?
A. 7 2
B. 5
C. 4
D. 9 2
Cho số phức z thỏa mãn (2-i)z = (2+i)(1-3i). Gọi M là điểm biểu diễn của z. Khi đó tọa độ điểm M là.
A. M(3;1)
B. M(3;-1)
C. M(1;3)
D. M(1;-3)
Cho số phức thỏa mãn |z-2i|=m^2+4m+6, với m là số thực. Biết rằng tập hợp các điểm biểu diễn của số phức w=(4-3i)z+2i là đường tròn. Bán kính của đường tròn đó có giá trị nhỏ nhất bằng
A..
B.2.
C.10.
D..
Gọi M là điểm biểu diễn của số phức z thỏa mãn 3| z + i| = | 2 z ¯ - z + 3i | . Tập hợp tất cả những điểm M như vậy là
A. một parabol.
B. một đường thẳng.
C. một đường tròn.
D. một elip.
Cho số phức z thỏa mãn: z ( 1 + 2 i ) - z ¯ ( 2 - 3 i ) = - 4 + 12 i . Tìm tọa độ điểm M biểu diễn số phức z.
Tìm điểm M biểu diễn bởi số phức z thỏa mãn z = (2+3i)(i+1)
A. M(2;3)
B. M(3;4)
C. M(-1;5)
D. M(5;5)
Cho M(1;2) là điểm biểu diễn số phức z. Tìm tọa độ của điểm N biểu diễn số phức w = z + 2 z ¯ .
A. N = (3;-2)
B. N = (2;-3)
C. N = (2;1)
D. N = (2;3)